o

Lisp

Didier Verna

Performance and Genericity

the forgotten power of Lisp

Didier Verna

didier@Irde.epita.fr
http://www.Irde.epita.fr/ didier

April 05 — ACCU 2008

mailto:didier@lrde.epita.fr
http://www.lrde.epita.fr/~didier

Some Background
'R Which explains a lot... .

Lisp

m Assistant professor in computer science
» Research on the performance and expressiveness of
General Common Lisp
inroduetion » Teaching (amongst other things) functional
programming to imperative-biased students
m Imperative-educated myself
» But | resisted
m Member of the XEmacs core maintainers team
» 11 years

Didier Verna

Why Lisp?
e What else do you need ?

Dm:is;w m Functional, purely or not ‘\‘0‘9‘"
_ m Imperative © e® X \\Z 9
Introduction m Object-Oriented / MOP s}\e X 00‘5 306\(\
m Aspect- / Context—Orj&g(&” \\)(\0\ (\,\‘,(\‘
m Declarative @S° O 0N
X e\
m Reflexive (idl'&p n L i@»rtession)

X .
= Magd® 15" 0% g1
= s 0 a&q)\efhatg\ﬁ'g, currying
] Sﬂﬁ e@&»ati@e&?hot

G

[Dyﬁ@‘m yped, or not
m Lexic&?ﬁ scoped, or not
m Interpreted / Byte-Compiled / Compiled, Embeddable
m No real difference between run-time and compile-time

o

Lisp

Didier Verna

General
Introduction

From Simon’s keynote

Simon’s big picture. .. was almost complete

Useful . . .
L

Useless

Nirvana

Lisp

'

IPL (side effects)

PFPL (no side effects)

| g From Andrei’s keynote

Let’s be realistic, | can’t win

Lisp
I’m a peaceful guy...

m Please continue using your favorite language

Didier Verna
General . B B .
Introduction m Please continue wishing you could use your favorite
language
m Please don’t feel aggressed
“This is cool” # “That is bad”

. BUT:
m Don’t you dare complaining about the parens

m Don’t you dare thinking that Lisp is dead
It doesn’t even smell funny
» Old # dead
» Old = mature
» Please at least have the decency to mention it !

Because if you can read this. ..

Lisp
Didier Verna template <template <class> class MV,
General struct ch_value_<M<tag::value_<T>>, V>
Introduction { typedef M<V> ret; };

typename T,

template <template <class> class M, typename I,
struct ch_value_<M<tag::image_<I>>, V>
{ typedef M<mln_ch_value (I, V)> ret; };

template <template <class, class> class M, typs
struct ch_value_<M<tag::value_<T>, tag::image_:
{ typedef mln_ch_value(I, V) ret; };

template <template <class, class> class M, typ:s
struct ch_value_<M<tag::psite_<P>, tag::value_:
{ typedef M<P, V> ret; };

o

Lisp

Didier Verna

General
Introduction

sure you can read that !

(template (template (class) (class M) (typename
(struct (ch_value_ (M (tag::value_ T)) V)
(typedef (M V) ret)))

(template (template (class) (class M) (typenams
(struct (ch_value_ (M (tag::image_ I)) V)
(typedef (M (mln_ch_value I V)) ret)))

(template (template (class class) (class M) (-
(struct (ch_value_ (M (tag::value_ T) (tag::im:
(typedef (mln_ch_value I V) ret)))

(template (template (class class) (class M) (&t
(struct (ch_value_ (M (tag::psite_ P) (tag::va.
(typedef (M P V) ret)))

Experimental Conditions

C Programs and Benchmarks

Lisp programs and benchmarks
m Raw Lisp
m Typed Lisp
m Results

Type inference

eeeeeee

Binary Methods non-issues
m Types, Classes, Inheritance
m Corollary: method combinations

Enforcing the concept — usage level
m Introspection
m Binary function class

Enforcing the concept — implementation level
m Misimplementations
m Strong binary functions

Subliminal slide
e You didn’t notice. ..

Lisp

Didier Verna

Part II: Genericity

Performance

Breaking the legend of slowness

Introduction
R False beliefs

Lisp

m Yobbo sez: “But Lisp is slow right ?”

Didier Verna

m Me: “How do you know that ?”

m Yobbo replies (choose your favorite answer):
» Huh, it's a well known fact
» Well, that's what | was told
» Hmmm, last time | checked. .. (yeah, in 84)

Facts
e Old ones actually

Lisp

m Lisp is not slow
» It's been 20 years
+ Smart compilers (= native machine code)
» Weak typing (types known at compile-time)
+ Safety levels (compiler optimizations)
« Efficient data structures (arrays, hash tables efc.)
» Today’s machines # 1960’s machines
m We need rock solid evidence:
» Comparative C and Lisp benchmarks
(part 1: full dedication)
» 4 simple image processing algorithms
» Pixel storage and access / arithmetic operations

Didier Verna

Table of contents

Experimental Conditions

C Programs and Benchmarks

Lisp programs and benchmarks
m Raw Lisp
m Typed Lisp
m Results

Type inference

Experimental conditions

Lisp

m The algorithms: the “point-wise” class
» Pixel assignment / addition / multiplication / division

Experiments » Soft parameters: image size / type / storage / access

» Hard parameters: compilers / optimization level

» = More than 1000 individual test cases

m The protocol

» Debian GNU Linux / 2.4.27-2-686 packaged kernel
» Pentium 4 /3GHz / 1GB RAM / 1MB level 2 cache
» Single user mode / SMP off (no hyperthreading)

» Measures on 200 consecutive iterations

Didier Verna

Lisp

Didier Verna

The case of C

The add function

void add (image =to, image *from, float val)

{

int i;
const int n = ima-—>n;

;o++i)

for (i = 0; n
from—>data[i] + val;

i <
to—>datali] =

m Gcc 4.0.3 (Debian package)
m Full optimization: -03 -DNDEBUG plus inlining
m Note: inlining should be almost negligible

Results
'R In terms of behavior

Lisp

m 1D implementation slightly better (10% = 20%)
m Linear access faster (15 = 35 times)

» Arithmetic overhead: only 4x — 6x
» Main cause: hardware cache optimization

Didier Verna

The case of C

m Optimized code faster (60%) in linear case, irrelevant
in pseudo-random access

m Inlining negligible (2%)

Lisp

Didier Verna

The case of C

Results

In terms of performance

Fully optimized inlined C code

Algorithm | Integer Image | Float Image
Assignment 0.29 0.29
Addition 0.48 0.47
Multiplication 0.48 0.46
Division 0.58 1.93

m Not much difference between pixel types
m Surprise: integer division should be costly

» “Constant Integer Optimization” (with inlining)
» Do not neglect inlining !

ﬁ% First shot at Lisp code

Lisp

The add function, take 1

Didier Verna
(defun add (to from val)
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i) (+ (aref from i) val)))))

m Common Lisp’s standard simple-array type

m Interpreted version: 2300x
m Compiled version: 60x
m Optimized version: 20x

Untyped source code =- dynamic type checking !

Lisp

m Typing paradigm:
» Type information (Common Lisp standard)
Declare the expected types of Lisp objects
» Type information is optional
Declare only what you know; give hints to the compilers
» Both a statically and dynamically typed language
m Typing mechanisms:
» Function arguments:
(make-array size :element-type ’'single-float)
» Type declarations:
Function parameter / freshly bound local variable

> -

Didier Verna

Typed Lisp

Declaring the types of function parameters

| g Typed Lisp code sample

Lisp

The add function, take 2

Didier Verna
(defun add (to from val)
(declare (type (simple—array single—float (%)) to from))
(declare (type single—float val))
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i) (+ (aref from i) val)))))

Typed Lisp

B simple-array’s...
m of single-float’s...
m uni-dimensional.

Object representation
e Why typing matters for performance

Lisp

m Dynamic typing = objects of any type (worse: any size)
m Lisp variables don’t carry type information: objects do

Didier Verna

The “boxed” representation of Lisp objects

Typed Lisp

Pointer to Lisp Object

Type information | @———»| Actual value

m Dynamic type checking is costly !

o

Lisp

Didier Verna

Typed Lisp

The benefits of typing

2 examples

m Array storage layout:
» Homogeneous arrays of a known type
= native representation usable
» Specialization of the aref function
» “Open Coding”
m Immediate objects:
» Short (less than a memory word)
» Special “tag bits” (invalid as pointer values)
» = Encoded inline

Unboxed fixnum representation

[Tagbits |

Bits1...

29 30 31 32

1,00

fixnum value (30 bits)

Declaring the types of function parameters

| g Typed Lisp code sample

Lisp

The add function, take 2

Didier Verna
(defun add (to from val)
(declare (type (simple—array single—float (%)) to from))
(declare (type single—float val))
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i) (+ (aref from i) val)))))

Typed Lisp

B simple-array’s...
m of single-float’s...
m uni-dimensional.

(dotimes (i 100) ...)

| : Example: optimizing a loop index

Lisp

Disassembly of a dot imes macro

Didier Verna
58701478: .ENTRY FOO()

90: POP DWORD PTR [EBP-38]
93: LEA ESP, [EBP-32]
96: XOR EAX, EAX
98: JMP L1

et 9A: LO: ADD EAX, 4
9D: L1: CMP EAX, 400
A2: JL LO
A4 MoV EDX, #x2800000B
A9: MOV ECX, [EBP-8]
AC: MoV EAX, [EBP—4]
AF: ADD ECX, 2
B2: MoV ESP, EBP
B4: MOV EBP, EAX
B6: JMP ECX

‘j‘{ Activating optimization

Lisp L. s .

- m “Qualities” (Common Lisp standard): between 0 and 3
B safety, speed elc.

m Global or local declarations in source code

(no compiler flag)

Global qualities declaration

Typed Lisp

(declaim (optimize (speed 3)
(compilation-speed 0)
(safety 0)

(debug 0)))

m Safe code: declarations treated as assertions
m Optimized code: declarations trusted

ﬁ% Final Lisp code sample

Lisp

The add function

Didier Verna
(defun add (to from val)
(declare (type (simple—array single—float (%)) to from))
(declare (type single—float val))
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i) (+ (aref from i) val)))))

m CMmU-CL (19¢), SBcL (0.9.9), AcL (7.0)

m Full optimization: (speed 3), 0 elsewhere

m Array type: 1D, 2D

| Array access: aref, row-major—-aref, svref

Comparative results
'R In terms of behavior

Lisp

#+ Plain 2D implementation much slower (2.8x = 4.5x)
= Linear access faster (30 times)
» Same reasons, same behavior. ..
= Optimized code faster in linear case, irrelevant in
pseudo-random access

Gain more important in Lisp (3x = 5x)
Gain more important on floating point numbers
= In Lisp, safety is costly

= Inlining negligible
=% No “Constant Integer Optimization”

= Negative impact on performance (-15%), if any
= Inlining still a “hot” topic (register allocation policies ?)

Didier Verna

Comparative results
PR In terms of performance

Lisp

Pseudo-random access

Didier Verna
Rear to Front: ACL / SBCL / CMU-CL / C

30

E I Integer E
25— | O Floating Point 1

Results

Execution time (seconds)

Assignment Addition Multiplication Division

m Assignment: Lisp 19% faster than C
m Other: insignificant (5%)
m Exception: integer division

Comparative results
PR In terms of performance

Lisp

Linear access

Didier Verna
Rear to Front: ACL / SBCL / CMU-CL / C

21~ @ Integer _ 7
O Floating Point -l

Results

Execution time (seconds)
-

Assignment Addition Multiplication Division

m AcL: poor performance
m CMU-CL, SBCL: strictly equivalent to C
m C wins on integer division, loses on floating-point one

Type inference
PR A weakness of Common Lisp ...

Lisp

m Static typing cumbersome (source code annotations)
» Can we provide minimal type declarations ...
» ... and rely on type inference ?

m Incremental typing by compilation log examination

m Unfortunately:

» Compiler messages not necessarily ergonomic
» Type inference systems not necessarily clever

Didier Verna

Type inference

Example of (missing) type inference

Lisp

multiply excerpt
Didier Verna
Eae.cllzlare (type (simple—array fixnum (%)) to from))
(declare (type fixnum val))

(setf (aref to i) (the fixnum (x (aref from i) val))))))

B (x fixnum fixnum) # fixnum in general, but...
» to declared as an array of fixnum’s,
» so the multiplication has to return a fixnum

m CMU-CL and SBCL ok, ACL not ok.

» Need for further explicit type information
» worsein ACL:
declared-fixnums—-remain-fixnums—-switch

Type inference

ﬁ% Conclusion

Lisp

m In terms of behavior
» External parameters: no surprise
» Internal parameters: differences, attenuated by
optimization
m In terms of performance
» Comparable results in both languages
» Very smart Lisp compilers (given language
expressiveness)

Conclusion m However:

» Typing can be cumbersome

» Difficult to provide both correct and minimal information
(weakness of the Common Lisp standard)

» Inlining is still an issue

Didier Verna

Lisp

m Low level: try other compilers / architectures
(and compiler / architecture specific optimization
settings)

m Medium level: try more sophisticated algorithms
(neighborhoods, front-propagation)

m High level: try different levels of genericity
(dynamic object orientation, static meta-programming)

Didier Verna

Conclusion

m Do not restrict to image processing

Subliminal slide
e You didn’t notice. ..

Lisp

Didier Verna

Conclusion

Part Il

Genericity

a guided-tour through binary methods

Introduction
PR What are binary methods?

Lisp

m Binary Operation: 2 arguments of the same type
Examples: arithmetic / ordering relations (=, +,> efc.)

m OO Programming: 2 objects of the same class
Benefit from polymorphism efc.

m = Hence the term binary method

m However: [Bruce et al., 1995]

» problematic concept in traditional OO languages
» type / class relationship in the context of inheritance

Didier Verna

Introduction

Table of contents

Introduction

Binary Methods non-issues
m Types, Classes, Inheritance
m Corollary: method combinations

Enforcing the concept — usage level
m Introspection
m Binary function class

Enforcing the concept — implementation level
m Misimplementations
m Strong binary functions

Problem #1

l i Types, Classes, Inheritance

Lisp

The Point class UML hierarchy

Didier Verna

Point

Types, Classes, X, y : Integer
Inheritance

equal (Point) : Boolean

ColorPoint

color : String

equal (ColorPoint) : Boolean

; g C++ implementation attempt #1

Details omitted

Lisp

The C++ Point class hiera

Didier Verna

class Point

{

int x, y;
Types, Classes,
Inheritance

bool equal (Point& p)
{ return x == p.x && y == p.y; }
}i

class ColorPoint : public Point

{

std :: string color;

bool equal (ColorPoint& cp)
{ return color == cp.color && Point::equal (cp); }

b

But this doesn’t work. . .
PR Overloading is not what we want

Lisp

Looking through base class references

Didier Verna
int main (int argc, char xargv[])

{
Point& p1 = x new ColorPoint (1, 2, "red");
e Point& p2 = * new ColorPoint (1, 2, "green");

std ::cout << pl1.equal (p2) << std::endl;
// => True. #### Wrong !

B ColorPoint::equal only overloads Point: :equal
in the derived class

m From the base class, only Point: :equal is seen

m What we want is to use the definition from the exact
class

; g C++ implementation attempt #2

Details still omitted

Lisp

The C++ Point class hiera

Didier Verna

class Point

{

int x, y;
Types, Classes,
Inheritance

virtual bool equal (Point& p)
{ return x == p.x & y == p.y; }
15

class ColorPoint : public Point

{

std :: string color;

virtual bool equal (ColorPoint& cp)
{ return color == cp.color && Point::equal (cp); }

b

Still got overloading, still not what we want

| g But this doesn’t work either. ..

Lisp

The forbidden fruit

Didier Verna
virtual bool equal (Point& p);
virtual bool equal (ColorPoint& cp); // #### Forbidden !

Types, Classes,
Inheritance

m Invariance required on virtual methods argument types
m Worse: here, the virtual keyword is silently ignored
m And we get an overloading behavior, as before

m Why? To preserve type safety

And lead to errors at run-time

; g Why the typing would be unsafe

Lisp

Example of run-time typing error

Didier Verna
In fact, a ColorPoint Just a Point

/

bool foo (Point& p1, Point& p2)

{
return p1.equal (p2);

The ColorPoint implementation But gets only a Point !

expects a ColorPoint argument

Types, Classes,
Inheritance

/

\v

(ex. accesses the color field)

covariance, contravariance. . . invariance

; g Constraints for type safety

- m When subtyping a polymorphic method, we must

» supertype the arguments (contravariance)
» subtype the return value (covariance)

m Note: C++ is even more constrained
» The argument types must be invariant

m Note: Eiffel allows for arguments covariance
» But this leads to possible run-time errors

m Analysis: [Castagna, 1995].

» Lack of expressiveness

subtyping (by subclassing) # specialization
» Object model defect

single dispatch (not the record-based model)

Didier Verna

Types, Classes,
Inheritance

; : CLos: the Common Lisp Object System

A different model

Li - .
=P m Methods vs. Generic Functions

» C++ methods belong to classes
» CLOS generic functions look like ordinary functions
(outside classes)

s m Single dispatch vs. Multi-Methods

» C++ dispatch based on the first (hidden) argument type
(this)

» CLOs dispatch based on the type of any number of
arguments

Didier Verna

m Note: a CLOS “method” is a specialized
implementation of a generic function

CLOS implementation
'R No detail omitted

The CLOS Point class hierarchy

Lisp

Didier Verna

(defclass point ()
((x :initarg :x :reader point—x)
(y :initarg :y :reader point—-y)))

Types, Classes,
Inheritance

(defclass color—point (point)
((color :initarg :color :reader point—color)))

;, optional
(defgeneric point= (a b))

(defmethod point= ((a point) (b point))
(and (= (point—x a) (point—x b))
(= (point—y a) (point—y b))))

(defmethod point= ((a color—point) (b color—point))
(and (string= (point—color a) (point—color b))
(call-next—method)))

How to use it?
e Just like ordinary function calls

Lisp

Using the generic function

Didier Verna

(let ()

(make—point :x 1 :y)
y 2))

i

1

(p1
(p2 (make—point :x 1
(cp1 (make—color—point
D (cp2 (make—color—point
(values (point= p1 p2)
(point= cp1 cp2)))
;; => (T NIL)

2
2
IX iy 2 :color "red"))

X 1y 2 :color "green")))

m Proper method selected based on both arguments
(multiple dispatch)

m Function call syntax, more pleasant aesthetically
(pl.equal (p2) orp2.equal (pl)?)
m = Hence the term binary function

Applicable methods
PR There are more than one. ..

Lisp

m To avoid code duplication:
» C++: Point::equal ()
» CLOS: (call-next-method)

m Applicable methods:

» All methods compatible with the arguments classes

» Sorted by (decreasing) specificity order

» call-next-method calls the next most specific
applicable method

m Method combinations:
» Ways of calling several (all) applicable methods
(not just the most specific one)
» Predefined method combinations: and, or, progn etc.
» User definable

Didier Verna

Method comb.

; g C++ implementation attempt #1

Details omitted

Lisp

The C++ Point class hiera

Didier Verna

class Point

{

int x, y;

Method comb. bool equal (Point& p)
{ return x == p.x & y == p.y; }
}i

class ColorPoint : public Point

{

std :: string color;

bool equal (ColorPoint& cp)
{ return color == cp.color && Point::equal (cp); }

b

CLOS implementation
'R No detail omitted

The CLOS Point class hierarchy

Lisp

Didier Verna

(defclass point ()
((x :initarg :x :reader point—x)
(y :initarg :y :reader point—-y)))

Method comb. (defclass color—point (point)
((color :initarg :color :reader point—color)))

;, optional
(defgeneric point= (a b))

(defmethod point= ((a point) (b point))
(and (= (point—x a) (point—x b))
(= (point—y a) (point—y b))))

(defmethod point= ((a color—point) (b color—point))
(and (string= (point—color a) (point—color b))
(call-next—method)))

Applicable methods
PR There are more than one. ..

Lisp

m To avoid code duplication:
» C++: Point::equal ()
» CLOS: (call-next-method)

m Applicable methods:

» All methods compatible with the arguments classes

» Sorted by (decreasing) specificity order

» call-next-method calls the next most specific
applicable method

m Method combinations:
» Ways of calling several (all) applicable methods
(not just the most specific one)
» Predefined method combinations: and, or, progn etc.
» User definable

Didier Verna

Method comb.

; : Using the and method combination

Comes in handy for the equality concept

The and method combination

(defgeneric point= (a b)
(: method—combination and)

)
(defmethod point= and ((a point)

Lisp

Didier Verna

(b point))

(and (= (point—x a) (point—x b))
(= (point—y a) (point—y b))))

(defmethod point= and ((a color—point) (b color—point))

(string= (point—color a) (point—color b))

m = In CLOS, the generic dispatch is (re-)programmable

| : Binary methods could be misused

Can we protect against it?

Lisp

The point= function used incorrectly

Didier Verna
(let ((p (make—point :x 1 :y 2))
(cp (make—color—point :x 1 :y 2 :color "red")))

(point=p cp))
;. = T #### Wrong !

B (point= <point> <point>) is an applicable
method (because a color-point isa point)

m = The code above is valid
m = And the error goes unnoticed

Introspection in CLOS
IR Inquiring the class of an object

Lisp

Using the function class-of

Didier Verna

(assert (eq (class—of a) (class—of b)))

m When to perform the check?
» In all methods: code duplication
» In the basic method: not efficient
» In abefore-method: not available with the and
method combination
» In a user-defined method combination: not the place
m Where to perform the check? (a better question)
» Nowhere near the code for point=
» Part of the binary function concept, not point=
m = We should implement the binary function concept
» A specialized class of generic function?

Introspection

4 g The CLOS Meta-Object Protocol

aka the CLOS MOP

o m CLoOs jtselfis object-oriented
» The CLOS MOP: a de facto implementation standard
» The CLOS components (classes elc.) are
(meta-)objects of some (meta-)classes
» Generic functions are meta-objects of the
standard-generic—-function meta-class

m = We can subclass standard-generic—-function

The binary—-function meta-class

(defclass binary—function (standard—generic—function)
()

(:metaclass funcallable—standard—class))

Didier Verna

Binary function class

(defmacro defbinary (function—name lambda—list &rest options)
‘(defgeneric ,function—name ,lambda-list
(:generic—function—class binary—function)
,@options))

Back to introspection
'R Hooking the check

Lisp

m Calling a generic function involves:
» Computing the list of applicable methods
» Sorting and combining them
» Calling the resulting effective method

Didier Verna

B compute-applicable-methods-using-classes

» Does as its name suggests
» Based on the classes of the arguments
» A good place to hook

m We can specialize it!
» Itis a generic function ...

Binary function class

Specializing the c—a-m-u-c generic function

(defmethod c—a—m-u—-c :before ((bf binary—function) classes)
(assert (equal (car classes) (cadr classes))))

| : Binary methods could be misimplemented

Can we protect against it?

Lis
’ m We protected against calling

(point= <point> <color-point>)
m Can we protect against implementing it?
B add-method

» Registers a new method (created with defmethod)
» We can specialize it!

« ltis a generic function ...

Didier Verna

Misimplementations

Specializing the add-method generic function

(defmethod add—method :before ((bf binary—function) method)
(assert (apply #’equal (method—specializers method))))

o

Lisp

Didier Verna

Strong bin. functions

Binary methods could be forgotten

Can we protect against it?

m Strong binary functions:
» Every subclass of point should specialize point=
» Late checking: at generic function call time
(preserve interactive development)
m Binary completeness:
There is a specialization on the arguments’ exact class
There are specializations for all super-classes
m Introspection:

» Binary completeness of the list of applicable methods
» c—a-m-u-c returns this!

Hooking the check

(defmethod c—a—m-u-c ((bf binary—function) classes)
(multiple—value—bind (methods ok) (call-next—method)

(values methods ok)))

Is there a bottommost specialization?
R Check #1

Lisp
B classes ="' (<Kexact> <exact>)
Didier Verna

B method-specializers returns the arguments
classes from the defmethod call

m = We should compare <exact > with the specialization
of the first applicable method

(letx ((method (car methods))
(class (car (method—specializers method))))

(assert (equal (list class class) classes))

.....

i g Are there specializations for all super-classes?
R Check #2

Lisp . . o
B find-method retrieves a generic function’s method

Didier Verna . apr T
given a set of qualifiers / specializers

B method-qualifiers does as its name suggests

B class-direct-superclasses as well

Check #2

(labels ((check—binary—completeness (class)
(find—method bf (method—qualifiers method)
(list class class))

Strong bin. functions

(dolist
(cls (remove-—if
#’(lambda (elt)
(eq elt (find—class
’standard—object)))
(class—direct—superclasses class)))
(check—binary—completeness cls))))

(check—binary—completeness class))

Lisp

m Binary methods problematic in traditional OOP

Didier Verna
m Multi-methods as in CLOS remove the problem
m CLOS and the CLOS MOP let you support the concept:
» make it available
» ensure a correct usage
» ensure a correct implementation
m But the concept is implemented explicitly

» CLOS is not just an object system
» CLOS is not even just a customizable object system

Conclusion

CLos is an object system designed to let you program
new object systems

Lisp satisfies
PR Alive and kicking

Lisp

m Lisp is a truely multi-paradigm programming language
Probably the most versatile of them

m Lisp is the language of freedom
PPP: Permissive Programming Paradigm

m Freedom means more ways to shoot yourself in the foot

m But also the ability to be extremely defensive if you
want to

Didier Verna

Conclusion

What'’s the next challenge in computer

languages ?

m Not functional programming (we won)
Threads are dead, long live Erlang!

m Dynamic vs. static languages
m Simon: “Be pure by default, impure when needed”
m Me: “Be dynamic by default, static when needed”

ﬁ Bruce, K. B., Cardelli, L., Castagna, G., Eifrig, J., Smith, S. F.,
Trifonov, V., Leavens, G. T., and Pierce, B. C. (1995).

osources On binary methods.

Theory and Practice of Object Systems, 1(3):221-242.

[§ Castagna, G. (1995).
Covariance and contravariance: conflict without a cause.
ACM Transactions on Programming Languages and
Systems, 17(3):431-447.

[§ Verna, D. (2006).
Beating C in scientific computing applications.
In Third European Lisp Workshop at ECOOP, Nantes, France.

[§ Verna, D. (2008).
Binary methods: the CLOS perspective.
To appear in First European Lisp Symposium, Bordeaux,
France.

http://lisp-ecoop06.bknr.net/home
http://www.emn.fr/x-info/ecoop2006

Lisp

m Practical Common Lisp (Peter Seibel)

Didier Verna

m Structure and implementation of Computer programs
crouees [scheme] (Abelson, Sussman)

m Have a look at the link section on my website

Didier Verna

m 1st European Lisp Symposium, May 22-23 2008,
Bordeaux, France.
http://prog.vub.ac.be/~pcostanza/els08/

m 5th European Lisp Workshop, July 7 2008, Cyprus,
co-located with ECOOP.
http://elw.bknr.net/2008

m Next International Lisp Conference ... 2009
MIT, Cambridge

http://prog.vub.ac.be/~pcostanza/els08/
http://elw.bknr.net/2008

Congratulations !
'R Remember ? I'm a peaceful guy. ..

Lisp

Didier Verna

I've just heard that C++ is going
to have lambda expressions...
48 years after Lisp !

	General Introduction
	Part I: Performance
	Part II: Genericity

	PerformanceBreaking the legend of slowness
	Experimental Conditions
	C Programs and Benchmarks
	Lisp programs and benchmarks
	Raw Lisp
	Typed Lisp
	Results

	Type inference
	Conclusion

	Genericitya guided-tour through binary methods
	Introduction
	Binary Methods non-issues
	Types, Classes, Inheritance
	Corollary: method combinations

	Enforcing the concept -- usage level
	Introspection
	Binary function class

	Enforcing the concept -- implementation level
	Misimplementations
	Strong binary functions

	Conclusion

	General Conclusion
	Conclusion
	Resources
	Next Events

