
The University of Hertfordshire

The Challenges facing Libraries and 
Imperative Languages from 

Massively Parallel Architectures

Building Futures in Computer Science
empowering people through technology

Jason McGuiness
Computer Science
University of Hertfordshire
UK

Colin Egan
Computer Science
University of Hertfordshire
UK



• Parallel processing
– Pipeline processors, MII architectures, Multiprocessors

• Processing In Memory (PIM)
– Cellular Architectures: Cyclops/DIMES and picoChip

• Code-generation issues arising from massive parallelism
• Possible solutions to this issue:

– Use the compiler or some libraries
• An example implementation of a library, and the issues
• Questions? 

– Ask as we go along, but we’ll also leave time for questions at 
then end of this presentation

Presentation Structure



Parallel Processing

• How can parallel processing be achieved?
– By exploiting:

• Instruction Level Parallelism (ILP)
• Thread Level Parallelism (TLP)
• Multi-processing
• Data Level Parallelism (DLP)
• Simultaneous Multi-Processing (SMP)
• Concurrent processing
• etcetera



• Exploits ILP by overlapping instructions in different 
stages of execution:
– ILP is the amount of operations in a computer program that 

can be performed on at the same time (simultaneously)

• Improves overall program execution time by 
increasing throughput:
– It does not improve individual instruction execution time

Pipelining  



• A simple 5-stage pipeline

Pipelining  
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• Pipelining introduces hazards which can severely 
impact on processor performance:
– Data (RAW, WAW and WAR)
– Control (conditional branch instructions)
– Structural (hardware contention)

• To overcome such hazards complex hardware 
(dynamic scheduling) or complex software (static 
scheduling) or a combination of both is required

Pipelining hazards



• MII
– A processor that is capable of fetching and issuing 

more than one instruction during each processor cycle
– A program is executed in parallel, but the processor 

maintains the outward appearance of sequential 
execution

– The program binary must therefore be regarded as a 
specification of what was done, not how it was done

– Minimise program execution time by:
• by reducing instruction latencies
• by exploiting additional ILP

Multiple Instruction Issue 



• Superscalar Processor:
– An MII processor where the number of instructions issued 

in each clock cycle is determined dynamically by hardware 
at run-time  

• Instruction issue may be in-order or out-of-order (Tomasulo or 
equivalent).

• VLIW Processor (Very Long Instruction Word):
– An MII processor where the number of operations 

(instructions) issued in each clock cycle is fixed and where 
the operations are selected statically by the compiler at 
compile time 

Multiple Instruction Issue 



• To sustain multiple instruction fetch, MII 
architectures require a complex memory hierarchy:
– Caches

• l1, l2, stream buffers, non-blocking caches
– Virtual Memory

• TLB

– Caches suffer from:
• Compulsory misses
• Capacity misses
• Collisions

Problems of MII



• Compulsory misses:
– The first time a processor address is requested it will not be 

in cache memory and must be fetched from a slower level 
of the memory hierarchy:

• Hopefully main (physical) memory
• If not from Virtual Memory
• If not from secondary storage

– This can result in long delay (latency) due to large access 
time(s)

Memory Problems



• Capacity misses:
– There are more cache block requests than the size of the 

cache
• Collisions:

– The processor makes a request to the same block but for 
different instructions/data

• For both:
– Blocks therefore have to be replaced
– But a block that has been replaced might be referenced 

again resulting in yet more replacements

Memory Problems



• A thread can be considered to be a ‘light weight 
process’
– Where a thread consists of a short sequence of code, with 

its own: 
• registers, data, state and so on
• but shares process space

• TLP is exploited by simultaneously executing 
different threads on different processors:
– TLP is therefore exploited by multiprocessors

Thread Level Parallelism



Multiprocessors

• Should be:
– Easily scalable
– Fault tolerant
– Achieve higher performance than a uni-processor

• But …
– How many processors can we connect?
– How do parallel processors share data?
– How are parallel processors co-ordinated?



Multiprocessors

• Shared Memory Processors (SMP)
– All processors share a single global memory address space

– Communication is through shared variables in memory

– Synchronisation is via locks (hardware) or semaphores 
(software)



Multiprocessors

• Uniform Memory Access (UMA)
– All memory accesses take the same time
– Do not scale well

• Non-uniform Memory Access (NUMA)
– Each processor has a private (local) memory
– Global memory access time can vary from processor to 

processor
– Present more programming challenges
– Are easier to scale



Multiprocessors

• NUMA
– Communication and synchronization are achieved 

through message passing:
• Processors could then, for example, communicate over 

an interconnection network
• Processors use send and receive primitives



Multiprocessors

• The difficulty is in writing effective parallel programs:
– Parallel programs are inherently harder to develop
– Programmers need to understand the underlying hardware
– Programs tend not to be portable
– Amdahl’s law; a very small part of a program that is inherently 

sequential can severely limit the attainable speedup

• “It remains to be seen how many important applications 
will run on multiprocessors via parallel processing.”

• “The difficulty has been that too few important 
application programs have been written to complete tasks 
sooner on multiprocessors.”



Multiprocessors

• Multiprocessors suffer the same memory problems as 
uni-processors and in addition:
– The problem of maintaining memory coherence

between the processors



• A read operation must return the value of the 
latest write operation

• But in multiprocessors each processor will 
(probably) have its own private cache memory
– There is no guarantee of data consistency between 

private (local) cache memory and shared (global) 
memory

Cache Coherence



• The idea of PIM is to overcome the bottleneck 
between the processor and main memory by 
combining a processor and memory on a single chip

• The benefits of a PIM architecture are:
– Reduced memory latency
– Increases memory bandwidth
– Simplifies the memory hierarchy
– Provides multi-processor scaling capabilities:

• Cellular architectures

– Avoids the Von Neumann bottleneck

Processing in memory



• This means that:
– Much of the expensive memory hierarchy can be 

dispensed with
– CPU cores can be replaced with simpler designs
– Less power is used by PIM
– Less silicon space is used by PIM

Processing in memory



• But …
– Processor speed is reduced
– The amount of available memory is reduced

• However, PIM is easily scaled:
– Multiple PIM chips connected together forming a 

network of PIM cells

– Such scaled architectures are called Cellular 
architectures

Processing in memory



• Cellular architectures consist of a high number of  
cells (PIM units):
– With tens of thousands up to one million  processors

– Each cell (PIM) is small enough to achieve extremely 
large-scale parallel operations

– To minimise communication time between cells, each cell 
is only connected to its neighbours

Cellular architectures



• Cellular architectures are fault tolerant:
– With so many cells, it is inevitable that some processors 

will fail
– Cellular architecture simply re-route instructions and data 

around failed cells

• Cellular architectures are ranked highly as today’s 
Supercomputers:
– IBM BlueGene takes the top slots in the Top 500 list

Cellular architectures



• Cellular architectures are threaded:
– Each thread unit:

• Is independent of all other thread units
• Serves as a single in-order issue processor
• Shares computationally expensive hardware such as floating-point 

units

– There can be a large number of thread units:
• 1,000s if not 100,000s of thousands
• Therefore they are massively parallel architectures

Cellular architectures



• Cellular architectures are NUMA
– Have irregular memory access:

• Some memory is very close to the thread units and is 
extremely fast

• Some is off-chip and slow

• Cellular architectures, therefore, use caches 
and have a memory hierarchy

Cellular architectures



• In Cellular architectures multiple thread units 
perform memory accesses independently

• This means that the memory subsystem of 
Cellular architectures do in fact require some 
form of memory access model that permits 
memory accesses to be effectively served 

Cellular architectures



• Uses of Cellular architectures:
– Games machines (simple Cellular architecture)
– Bioinformatics (protein folding)
– Imaging

• Satellite
• Medical
• Etcetera

– Research
– Etcetera

Cellular architectures



• Examples:
– BlueGene Project:

• Cyclops (IBM) – next generation from BlueGene/P, 
called BlueGene/C

– DIMES – a prototype implementation

– Gilgamesh (NASA)
– Shamrock (Notre Dame)
– picoChip (Bath, UK)

Cellular architectures



• Developed by IBM at the Tom Watson Research 
Center

• Also called BlueGene/C in comparison with the 
earlier version of BlueGene/L and BlueGene/P

IBM  Cyclops or BlueGene/C



• The idea of Cyclops is to provide around one million 
processors:

– Where each processor can perform a billion operations per 
second

– Which means that Cyclops will be capable of one petaflop 
of computations per second (a thousand trillion calculations 
per second)

Cyclops
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• DIMES:
– Is the first hardware implementation of a Cellular 

architecture
– Is a simplified ‘cut-down’ version of Cyclops
– Is hardware validation tool for Cellular architectures
– Emulates Cellular architectures, in particular Cyclops, 

cycle-by-cycle 
– Is implemented on at least one FPGA
– Has been evaluated by Jason

DIMES



• The DIMES implementation that Jason evaluated:
– Supports a P-thread programming model
– Is a dual processor where each processor has four thread 

units
– Has 4K of scratch-pad (local) memory per thread unit
– Has two banks of 64K global shared memory
– Has different memory models:

• Scratch pad memory obeys the program consistency model for all 
of the eight thread units

• Global memory obeys the sequential consistency model for all of 
the eight thread units

– Is called DIMES/P2

DIMES
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• Jason’s concerns were:
– How to manage a potentially large number of 

threads

– How to exploit parallelism from the input source 
code in these threads

– How to manage memory consistency

DIMES



• Jason tested his concerns by using an “embarrassingly 
parallel program which generated Mandelbrot sets”

• Jason’s approach was to distribute the work-load between 
threads and he also implemented a work-stealing 
algorithm to balance loads between threads:
– When a thread completed its ‘work-load’, rather than 

remain idle that thread would ‘steal-work’ from another 
‘busy’ thread

– This meant that he maximised parallelism and improved 
thread performance and hence overall program execution 
time

DIMES



DIMES
Shortly after program start Shortly before work stealing

Just after work stealing More work stealing



picoChip
• picoChip are based in Bath

– “… is dedicated to providing fast, flexible wireless 
solutions for next generation telecommunications 
systems.”

• picoArrayTM

– Is a tiled architecture
– 308 heterogeneous processors connected together,
– The interconnects consist of bus switches joined by 

picoBusTM

– Each processor is connected to the picoBusTM 

above and below it



picoChip

• picoArrayTM

–



picoChip and Parallelism

• The parallelism provided by picoChip is 
synchronous 
– This avoids many of the issues raised by the other 

architectures that expose asynchronous parallelism

– But it is at the cost of the flexibility that 
asynchronous parallelism provides



Abstraction of the Parallelism

• This may be done in various ways:
– For example within the compiler:

• Using trace scheduling, list-based scheduling or other 
data-flow based means amongst others

– Using language features:
• HPF, UPC or the additions to C++ in the IBM Visual 

Age compiler and Microsoft's additions
– Most commonly using libraries:

• For example: Posix threads, Win32 threads, OpenMP, 
boost.thread, home-grown wrappers



Parallelism using Libraries

• Using libraries has a major advantage over 
implementing parallelism within the language:
– It does not require the design of a new language, 

nor learning a new language
– Novel languages are traditionally seen as a burden 

and often hinder adoption of new systems due to 
the volume of existing source-code

– But libraries are especially prone to mis-use and 
are traditionally hard to use



Issues of Libraries: part I
• The model exposed is very diverse:

– Message passing, e.g. OpenMP
– Exposes loop-level parallelism (e.g. “forall ...”

constructs) exposes very limited parallelism in 
general-purpose code

– Is very low-level, e.g. the primitives exposed in 
Posix Threads are extremely basic: mutexes, 
condition variables, and basic thread operations

• The libraries require experience to use well, or 
even correctly



Part II: Non-composability of atomic 
operations!

• The fact that atomic operations do not compose is a 
major concern when using libraries!

• The composition of thread-safe data structures does 
not guarantee thread-safety:
– At each combination of the data structures, more locks are 

required to ensure correct operation!
– This implies more and more layers of locks, that are 

slow...



Parallelism in the Compiler

• Given the concerns with regards to libraries, 
what about parallelising compilers?

• The fact is that auto parallelising compilers 
exist, e.g. list-based scheduling implemented 
in the EARTH-C (circa 1999) has been proven 
to be optimal for that architecture

• Data-flow compilers have existed for years
– Why aren't they used?



Industrial Parallelising Compilers

• Microsoft is introducing OpenMP-based 
constructs into their compiler, e.g. “forall”

• IBM Visual Age has similar functionality
• Java has a thread library
• C++0x: much work has been done regarding 

standardisation with respect to multiple threads



C++ as an example

• The uses of C++ makes it an interesting target 
for parallelisation:
– Although imperative, so arguably flawed for 

implementing parallelism
– It has great market penetration, therefore there is 

much demand for using parallelism
– Commonly used in high-performance, multi-

threaded systems
– General-purpose nature and quality libraries are 

increasing the appeal to super-computers



Parallelism support in C++
• Libraries exist beyond the usual C libraries:

– boost.thread – exists now, requires standards-
compliant compilers

– C++0x: details of the threading support are 
becoming apparent that appear to include:
• Atomic operations (memory consistency), exceptions, 

machine-model underpins approach
• Threading models: thread-as-a-class, lock objects
• Thread pools – coming later – probably
• More details on the web, or at the ACCU - in flux



Experience using C++
• Recall DIMES:

– Prototype of massively parallel hardware
– Posix-threads style library implementing threads
– C++ thread-as-a-class wrapper implemented

• Summary of experience:
– Hardly object-orientated: no separation in design of the 

Mandlebrot application with the work-stealing algorithm 
and thread pool

– The software insufficiently separated the details of the 
hardware features from the design



Further experiences using C++

• From this work and other experiences, I 
developed a more interesting thread library:
– Traits abstract underlying OS thread API from 

wrapper library
– Therefore has hardware abstractions too
– Provision of higher-level threading models:

• Primarily based on futures and thread pools
– Use of thread pools and futures creates a singly 

rooted-tree of threads:
• Trivially deadlock free – a holy grail!



C++0x threads now? No!
• Included in libjmmcg:

– Relies upon non-standard behaviour and broken optimisers! For 
example:
• Problems with global code-motion moving apparently const-objects past 

locks
• Exception stack is unique to a thread, not global to program and currently 

unspecified
• Implementation of std::list

– DSEL has syntax limitations due to design of C++
– Doesn't use boost ...
– Has example code and test cases
– Isn't complete! (e.g. Posix & sequential specialisations 

incomplete, some inefficiencies)
– But get it from libjmmcg.sourceforge.net, under LGPL



Trivial example usage
struct res_t { int i; };

struct work_type {

typedef res_t result_type;

void process(result_type &) {}

};

pool_type pool(2);

async_work work(creator_t::it(work_type(1)));

execution_context context(pool<<joinable()<<time_critical()<<work);

pool.erase(context);

context->i;

• The devil is in the omitted details: the typedefs for:
– pool_type, async_work, execution_context, joinable, time_critical
• The library requires that the work to be mutated has the 

items in italics defined



Explanation of the example
• The concept is:

– that asynchronous work (async_work) that should be 
mutated (process) to the specified output type (result_type) 
is transferred into a thread pool (pool_type) of some kind

• This transfer (<<) may, optionally (joinable), return a 
future (execution_context)
– Which can be used to communicate (->) the result of the 

mutation, executed at kernel priority (time_critical), back 
to the caller

• The future also allows exceptions to be propagated



More details regarding the example
• The thread pool (pool_type) has many traits:

– Master-slave or work-stealing
– The thread API (Win32, Posix or sequential)
– The thread API costs in very rough terms
– Implies a work schedule that is a fifo baker's ticket schedule, 

implementation of GSS(k) is in progress
• The library effectively implements a software 

simulation of data-flow
• Wrapping a function call, plus parameters, in a class 

converts Kevlin's threading model to this one



Time for controversy....
What faces programmers...

• Large-scale parallelism is here, now:
– Blade frames at work:

• 4 cores x 4 CPUs x 20 frames per rack = 320 thread units, in a 
NUMA architecture

• The hardware is expensive!
• But so is the software ...

– It must be programmed, economically
– The programs must be maintained ...

• Or it will be an expensive failure?



Talk summary
• In this talk we have looked at parallel processing and 

justified the reasons for Processing In Memory (PIM) and 
therefore cellular architectures

• We have briefly looked at two example architectures:

– Cyclops and picoChip

• Jason has worked on DIMES, the first implementation of a 
(cut-down) version of a cellular architecture

• The issues of programming for these massively parallel 
architectures has been described

• We focussed on the future of threading in C++
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