C++/CLI — Why, oh why?

Seb Rose
Claysnow Limited
ACCU 2008



Roadmap

Apology — less code, more words than
promised

Background

Brief Syntax tour
Interoperability tour
Some small examples
The rest



Introduction

 What is C++/CLI?

* Why does it exist?

* When should it be used?
* Who should use it?

e Will | regret it?



Background

.NET is similar to a virtual machine

Managed execution environment called
Common Language Infrastructure (CLI)

CLR is implementation of CLI

JIT compilation of Common Intermediate
Language (CIL) — formerly MSIL

Assembly is unit of deployment
Metadata describes contents of assembly



Common Type System

Common Type System defines type system of
the CL

Many languages target CLI (i.e. provide
compilers that output assemblies)

To facilitate interoperation between
languages the Common Language
Specification (CLS) was defined

CLS is a subset of the CTS



.NET languages

Popular .NET languages are C# and VB

Much functionality is exposed by .NET
Framework libraries

Other Win32 functionality can be accessed
using Platform Invoke (P/Invoke)

P/Invoke requires .NET declaration of
functions to be used.

Types need to be marshalled



C++ Managed Extensions

Shipped with Visual Studio .NET
AKA Managed C++

New keywords started with double
underscores

Attempted to elide differences between CTS
and C++ type systems

Proved very unpopular with developers



C++/CLI Rationale

e Herb Sutter’s rationale available in full at:
http://www.gotw.ca/publications/C++CLIRationale.pdf

1)Language support for special code generation

2)Hide unnecessary differences, but expose
essential differences

3)Don’t interfere with evolution of ISO C++

4)Keywords don’t have to be reserved words



C++/CLI Standardisation

e Most of the .NET development has been
standardised

e C++/CLI was standardised by ECMA (ECMA-
372)
 Objections from many national bodies due to

fast-tracking of potentially confusing,
divergent standard



Why C++/CLI

e Easier Interop with native C++
- “It Just Works” (IJW) design intent

e Most powerful .NET language (?)
- we'll see some of the language constructs in

the extensions to C++

 Not available for Compact Framework



Why Interop?

Vast investment in existing software means
we can’t just throw it away

New functionality may only be available in
managed environment

Managed development promises enhanced
productivity

How can interop be made easier?



Easier Interop

* Alot of the legacy codebase was implemented
in C++

e Access to this functionality used to be as easy
as including a header file and linking against
an export library

 P/Invoke declarations could be created for
each library, but they expose methods, not
types, and limited marshalling control.



C++/CLI Compatibility

Visual Studio complier/linker provides 4 build
models:

1)Native — normal behaviour

2)CLR — compiles standard C++ and C++/CLI to
CIL (and can link native object files too)

3)CLR:pure — compiles standard C++ and
C++/CLI to CIL (no native object files)

4)CLR:safe — only compiles C++/CLI




Compatibility Types

o /clr gives source file and object file
compatibility

e /clr:pure gives source file compatibility

e /clr:safe gives no compatibility, but enables
the use of C++/CLI as a first class .NET
language with verifiability etc.



clr:pure

* Native calling conventions not allowed, so not
callable from native code

e What it’s for:
- mixed code assemblies must be stored in

files
- mixed code EXEs cannot be loaded

dynamically into a process



CIL
instructions
(compiled
with /clr)
ANSI C++ or
C++/CLI

Native
instructions
(compiled
without /clr)
Only ANSI
C++

Schematic

CLI
Implementation
e.g. CLR

Native Heap
(new/delete)

Managed
Heap
(gcnew)




Again, in words

Managed Type != Managed Code

Managed Types are always garbage collected
Native Types are never garbage collected

Methods for Managed Types are always
compiled to CIL

Methods for Native Types may be compiled to
CIL or native opcodes



Notes for .NET developers

C++ is very different from C#. C++/CLl is very
different from C++. Steep learning curve.

Visual Studio Intellisense not nearly as clever

Code marked with Conditional(“Debug”)
attribute is included in C++/CLI release builds.

A C++/CLI destructor is not a .NET finalizer. A
finalizer can be defined as: Foo::!Foo() {}



New Syntax — Type System

All types inherit from System::Object

Primitives are automatically boxed when used
in reference contexts

value defines a value type that inherits from
System::ValueType

Also interface and enum

New visibilities: internal, public protected,
protected private



New Syntax — Type System

Single inheritance
May implement any number of interfaces

Managed class definition:
public ref class Foo {};

Tracking handle: Foo” foo = gcnew Foo();

Tracking reference:
void createFoo(Foo”% foo) {
foo = gcnew Foo();

}



New Syntax — Object Creation

e |f you call a virtual method during
construction of a C++/CLI class, it will call the
most derived method, even though the most-
derived constructor has not yet been called.

e |[n C++/CLI, member field initialisation takes
place before calling any base class
constructor.

 To avoid problems, prefer member
initialisation over explicit initialisation in the
constructor.



New Syntax — Object Destruction

The runtime manages memory, but the
developer still manages resources.

The .NET idiom for resource release is to
implement IDisposable::Dispose()

The compiler will map a C++/CLI destructor to
Dispose()

The compiler maps a call to delete a C++/CLI
instance to a call to Dispose()



New Syntax — Object Destruction

Managed destructors may be called multiple
times

All calls after first must be ignored. Consider
whether class needs to be thread safe.

Calls to other methods on objects that have
been disposed can throw an
ObjectDisposedException

Use GC::KeepAlive to prevent finalization



New Syntax — Implicit Dereference

e C++/CLI allows you to use RAIll (Resource
Acquisition Is Initialisation)

e Compiler translates:

void doSomething(int i) void doSomething(int i)
{ {
Foo foo(i); ‘ Foo” foo = gcnew Foo(i);
foo.bar(); try {
} foo->bar();
}
finally {

delete foo;

}
}



New Syntax - Dispose pattern

ref class Foo : Idisposable

{
ref class Foo public:

virtual void Dispose() sealed {
{ Dispose (true);
GC.::SuppressFinalize(this);

public: }

protected:
~ virtual void Finalize() override {
FOO() {} ‘ Dispose(false);

}
!FOO() {} virtual void Dispose(bool Disposing) {
if (disposing)
5 ~F00();
else
IFoo();
)
private:
/Il User supplied destructor & finalizer



New Syntax - properties

property bool IsHappy {
bool get() { return isHappy_;}
void set(bool isHappy) { isHappy_ = isHappy; }

J
EQUIVALENT TO:

property bool IsHappy;

this->IsHappy = true;



New Syntax - Modifiers

e abstract

- can
- simi
anim

oe applied to classes and methods
ar to pure virtual (=0), but may not have

nlementation

- must be applied to classes with abstract
method(s)

e sealed
- can be applied to classes and methods
- prevents further derivation/overriding



New Syntax — More Modifiers

virtual - introduces a virtual method:
virtual void f();

override - overrides a virtual method:
virtual void f() override;

new — introduces new virtual ‘slot’
virtual void f() new;

Named overriding:
virtual void another_f() = Base::f;



New Syntax - const

Say goodbye to const.
You cannot declare methods as const.

You can declare parameters as const, but
without const methods you cannot call any
methods on the object.

You can declare fields as const, u this is rarely
useful — use initonly or literal.

const only makes sense for local primitives



Arrays and auto handle

* msclr::auto_handle
—analagous to std::auto_ptr

e cli - pseudo nhamespace
- array<int>" my;
- my = gcnew array<int,1>(2);
- interior ptr<int> pi = &(my[0]);



Mixing the type systems

Managed classes cannot contain native
members, but can contain pointers

Native classes cannot contain managed
members but you can use msclr::gcroot<> and
msclr::auto_gcroot<>

Use cli::pin_ptr<> to obtain a pointer to a
managed object

Can manually create auto pointer for native to
manage reference to managed object



SafeHandle

o Utility base class that manages native
resources reliably in the presence of
Asynchronous exceptions

e Uses Constrained Execution Regions (CER) to
guarantee successful allocation

* Protects against “handle-recycling” exploit:
http://blogs.msdn.com/bclteam/archive/2006/06/23/644343.aspx




Marshalling

System::Runtime::InteropServices::Marshal
provides many methods for marshalling

Some require matching calls to relevant
Marshall::FreeXxxx methods

Visual Studio 2008 ships with a simpler
marshall _as<> template library that can be
specialised for user types.

Marshalling contexts provide scoped resource
management



SEH Exceptions

e Can perform SEH __try handling in managed
code

 Automatic translation via _set_se translator
doesn’t happen in managed code

 Automatic translation to SEHException or one
of the specific derived exceptions (e.g.
OutOfMemoryException)



C++ & C++/CLI Exceptions

e Can mix in a single try block can have catch
blocks for managed and native exceptions

e Catch native exceptions before managed
exceptions or they may be translated into
SEHEXxception

* You can catch a managed exception in native
code using an SEH __try statement, but you
will not get access to its data



Templates

Templates are usually defined in header files

Template members depending on compilation
model of file including template

You can easily end up with native and
managed instantiations of same template

Linker chooses the one that matches
compilation model of caller



Converting a C++ project

Must use DLL versions of CRT
Apply /clr at file level
Need separate PCH file for managed files

/EHs compiler switch (no SEH) not allowed —
change to EHa at project level

/Z1 compiler switch (Edit & Continue) not
allowed — change to Zi at project level



Converting a C++ Project 2

CLR required (not supported by Mono?)
Requires CLR 2.0 or later

Only one version of CLR can be loaded into a
process — can specify requiredRuntime in
configuration file

RegisterOutput:false for linker — cannot load
mixed EXEs dynamically

Default COM apartment initialisation often
wrong



CAS Policies

Code Access Security - .NET safety feature

Default security policy loads applications from
network drives in a sandbox with restricted
permissions

Mixed or pure assemblies are not verifiable,
so cannot load in sandbox

Could use caspol.exe to grant assembly rights,
except that it uses reflection, and mixed EXEs
cannot be loaded dynamically



Function

Any combination of call

Interop

can be made

Thunks automatically perform transition

Native->Managed thun

ks are created

automatically at assembly load time

Managed->Native thun

Ks are created

dynamically on demanc

by JIT compiler



Native->Managed Thunks

vtfixup in assembly metadata for each
method with native calling convention

Interoperability vtable in assembly that maps
each method to a native->managed thunk

At load time CLR creates a thunk for each
vtfixup and stores pointer to it in vtable

Thunk only used when caller is native



Native->Managed Thunks 2

 Not generated for methods with _clrcall
calling convention

1) All members of Managed types are clrcall

2) Instance members of Unmanaged types
_clrcall or _thiscall depending on args

3) Static/global methods clrcall or cdecl
depending on args

4) stdcall allowed in 2) and 3) above



Native->Managed Thunks 3

Calling a C++ class compiled using /clr from
native code required a transition

C++ class methods are exposed as mangled
global functions with a this pointer

Function pointers to managed code (with
native calling convention) will be pointers to
thunks

Similarly, pointers to thunks are in the vtable
of C++ classes compiled to managed code



Double Thunking

Function pointers and vtables to C++ methods
compiled to managed code point to thunks

If called by managed code there needs to be a
managed->native thunk before the native->
managed thunk can be called: double thunk!

Function pointers can be cast to _clrcall

Virtual functions can be declared with _clrcall,
but this must be done when function
introduced (and closes door to native callers)



Managed->Native Thunks

* P/Invoke metadata generated automatically

 Type compatibility means reduced
marshalling

 Three possible thunk types:
1) Inlined thunks — saves cost of function call
2) Non-inlined thunks
3) Generic thunks — special marshalling
available, though only by using custom
metadata



Managed->Native Thunks 2

If native function is in a DLL the generated
thunk will assume that it might use
SetlLastError

Thunk will never be inlined
Result of GetLastError stored in TLS
Could use linker /CLRSUPPORTLASTERROR:NO

Better to define custom metadata:
[Dllimport(..., SetLastError=false)]void func();



GetlLastError gotchas

e |f local native methods use SetLastError, then
error will be lost, because P/Invoke doesn’t
store error code in TLS

e |f native function from DLL is called through a
function pointer, then thunk will be inlined
and error might be lost, because P/Invoke
doesn’t store error code in TLS



Delegates and function pointers

Marshall::GetFunctionPointerForDelegate
converts managed handler to a callback that
can be passed to a native API

Call ToPointer() to get function pointer

You must ensure that the delegate doesn’t get
garbage collected while the callback is in use

GetDelegateForFunctionPointer allows native
code to be called as-if it were a delegate



Application Startup

* OS looks for PE entry point

* Native apps typically use mainCRTStartup (or
similar) from msvcrt.lib

* CLR apps use CorExeMain from mscoree.lib,
which:
- loads & starts CLR
- initialises the assembly and executes the
Module Constructor
- calls the entry point of the assembly



Module Constructor

Signature: void _clrcall .cctor()
Can be manually provided if CRT not required

Default implementation initialises the CRT:
- initialises vtables

- parses command line

- global data in native code is initialised

- global data in managed code is initialised

Note: changing the compilation model of a file
can change order of global data initialisation



DLL Startup

Mixed code DLL entry point is _CorDIIMain
which then calls _DIIMainCRTStartup

DLL entry point can be called whenever a DLL
is loaded or unloaded or a thread is
started/shutdown

DIIMain is then called

_CorDIlIMain fixes up the interoperability
vtable to delay load the CLR if a managed
function is called and the CLR isn’t loaded yet



DIIMain and the Loader Lock

 The OS acquires the loader lock before calling
_CorDIlIMain

e User implementations of DIIMain must not:
- do inter-thread communication
- attempt to load another library explicitly
- execute managed code

e Also, since DIIMainCRTStartup initialises
global variables, their ctors and dtors should
observe the same restrictions



DIl Module Constructor

e Module Constructor is called after the loader
lock has been released

 If a source file is compiled with /clr all global
objects are initialised by the Module
Constructor

e Caution: If a global defined in a /clr file is
accessed by native code, then it may not yet
be initialised, because the CLR may not have
been delay loaded



Wrapping a Native DLL

* |t normally doesn’t make sense to expose the
native APl ‘as is’

e Expose .NET idioms not Win32 (or others)
- properties
- events
- exceptions

* Create a mixed MFC Regular DLL to wrap a
MFC Extension DLL



CLS Type Compliance

CLSCompliantAttribute:

Names not distinguished by case

No global static fields or methods
Exceptions derived from System::Exception
No unmanaged pointer types

No boxed value types

Custom attributes only of types Bool, Char,
String, Int, Single, Double, Type



Calling COM Objects - RCW

* Create Runtime Callable Wrapper using
tibimp.exe

e Dependency on RCW assembly/DLL

e Signatures are direct conversions of COM
functions



Custom RCW

Fuller control of managed interface

Store reference to COM object in
msclr::com::ptr instance

Provide custom APl and marshalling

HRESULTS can be converted to exceptions
using Marshall::GetExceptionForHR



Calls from COM Objects - CCW

Assembly needs to be registered (regasm.exe)
#fimport the type library (.tlb)

AddRef, Release, Querylnterface called
automatically

Classes must have default constructor
Return values translated to out references

Runtime handles marshalling, but need to
release native resources



WinForms/MFC Interop

e afxwinforms.h contains utility classes to allow
use of WinForms in MFC:
- CWinFormsControl
- CWinFormsView
- CWinFormsDialog

e Can create a WinForms User Control that
allows use of MFC controls on WinForms

 You can also interop WPF with MFC



Events and delegates

 Event handlers cannot be native member
functions (can be global/static functions)

e Use MAKE DELEGATE(HandlerType, handler);

e BEGIN DELEGATE MAP(class name)
EVENT _DELEGATE_ENTRY(handler, Object”?,
HandlerArgsh)
END DELEGATE_MAP()



Not using CRT?

Compile with /ZI (Omit Default Library Names)

Implement your own Module Constructor:
#pragma warning(disable:4483)
void _clrcall _identifier(“.cctor”)() {}

Ensure that _CorExeMain is resolved:
#pragma comment(lib, “mscoree.lib”)

Specify your own managed entry point:
#tpragma comment(linker, “/ENTRY:MyEntry”)

Remember not to use any CRT methods!



Single binary — multi language

e Can create a single assembly application from
source code written in C#, managed C++/CLI
and native C++

e Cannot be built from Visual Studio

* Requires use of netmodules and command
line compilation/linking

[Teixeira]



Single DLL for Native and Managed

e Mixed mode DLL (/clr)

 Conditional _ MANAGED__ compilation in
header of gcroot<> or intptr_t

e Public API must only use native types

e Managed APl includes operator to access
underlying managed type



Managed Types and Static Libraries

* |dentity of managed types is dependant on
assembly they are defined in

e Linker seems unable to resolve reference:
LNK2020

 Microsoft says this is side effect of JW

e |f C++ type defined in same source file &
instantiated by caller, then linker resolves
reference. Go figure.

[Sanna]



Summary

e ‘Safe’ C++/CLI gives you much of the power of
C++in a Windows .NET environment (e.g.
Templates and deterministic resource
management)

e C++/CLI gives you a lot of options to interop
with native/legacy code at the price of added
complexity



References

[Heege 2007] Expert C++/CLI Apress 1-59059-756-7
[Sivakumar 2007] C++/CLI in Action Manning 1-932394-82-8
[Duffy 2006] Professional .NET 2.0 Wrox 978-0-7645-7135-0

[Teixeira 2007] Linking native C++ into C# Applications
http://blogs.msdn.com/texblog/archive/2007/04/05/linking-native-c-into-
c-applications.aspx

[Zhang Blog] Netmodule vs. Assembly
http://blogs.msdn.com/junfeng/archive/2005/02/12/371683.aspx

[MSDN] .netmodule Files as Linker Inputs
http://msdn2.microsoft.com/en-us/library/k669k83h.aspx

[Heege Blog] Marshalling native function pointers
http://www.heege.net/blog/Permalink,guid,94167d73-7954-4a5c-a745-
dc60d352cdef.aspx

[Sanna Forum] Managed Classes in Static libs
http://forums.microsoft.com/MSDN/ShowPost.aspx?PostID=463461&Site
ID=1




