
Bits And Mortar
Ric Parkin
ACCU Conference 2008

2

Introduction

Sometimes lessons, rules and processes learnt in
one field can be applied to a different field

Is there a field that Software Development has learnt
from?

Can we learn more from that field? Or others?

And can we apply our knowledge to that field?

Architecture

3

Christopher Alexander

Mathematician and Architect
http://www.patternlanguage.com/

http://www.patternlanguage.com/

4

Notes On The Synthesis Of
Form

Idea is that design is about achieving a
number of requirements

• Eg Cost/Strength/Quality/Usability
• Kettle Example: 21 different goals

From Phd
Thesis

Too hard to solve all at once – attempt to
solve one thing and others will fail

• Eg Make vacuum walls – safer and more efficient,
but costs more and reduces market

How to simplify problem to manageable scale?

5

Islands Of Connectedness

• Changing one influences others
• Connections and weights
• Reduce search space by finding relatively isolated

islands of interconnected forces, and recurse
• Solve independently - “Diagrams”
• Piece together – blocks of design

6

Center For Environmental
Structure Series

The Timeless Way Of Building

A Pattern Language: Towns, Buildings,
Construction

The Oregon Experiment
The Production of Houses

The Linz Cafe

The Mary Rose Museum

7

The Timeless Way Of Building

“Notes” has method of discovering
diagrams to solve for arbitrary systems

But in practice you can find solutions in
advance – because networks of
requirements recur in real life

Solutions are called Patterns

8

Quality Without A Name

The character given by interlocking patterns to form
a harmonious “whole”

Alive

Whole

Comfortable

FreeExactEgoless

Eternal

Stable Sustaining

Some aspects:

9

Balance Of Forces

Design tries to accommodate various forces
Resolves internal tensions

Requires a network of interconnecting patterns at
differing scales to balance each others'
consequential forces

When something changes, the system is likely to
have other parts that can help in balancing the new
forces caused by the change.

Like a rich ecosystem

10

Patterns Of Events

A place is given a character by the events that keep
on happening in and around it

• Lecture theatre
• Punting
• Bustling market square

“Watching the world go by” is intimately linked to the
place where you do it, eg a porch

You have a porch, so you use it and watch the world
You want to sit out and watch, so you build a porch
Exact solution has cultural input too

Software analogies? User's tasks and habits; input data; hardware
events; flow of data and events though a system

11

A Pattern Language:
Towns, Buildings, Construction

Lots of patterns at different scales
• Regions, Towns, Communities
• Areas, Buildings and Rooms
• Construction
• Decoration and furniture

Remarkably readable, or can dip in and out

Full of classic pattern “A-ha” moments when you
recognise a pattern you know, or realise why
something that annoys you doesn't work

12

Pattern Parts (CA version)

Is a very literary type of pattern, but does have
various sections

• Name and Star Rating
• Evocative Picture
• Introduction, including which forces this helps complete
• Problem Context (headline and discussion)
• Solution (headline and discussion)
• Illustrative Sketch
• Consequential forces arising, including which patterns may be of help next

Examples...houses, offices, organisations

Language because patterns lead from one to another
- incoming and outgoing consequences: sentences get formed

13

House Patterns

• Fireplace
• Window with a view of life
• Waist-high shelf
• "Corridor" though rooms
• Sunny sheltered spot
• Six foot balcony – get a table in
• Balconies half-in-half-out – public/private rooms
• Pools of light
• Climbing plants

14

Office Patterns

Alexander – Office Patterns (unpublished)
• Reception Welcomes You
• Small Work Groups
• Water cooler places. Informal discussion areas.

Whiteboards!
• Personalised desks
• Amount of communication vs distance apart
• Different rooms, floors, buildings
• Shielding from distractions, vs overheard

conversation. Half Open Office
• power/network connections are changable

15

Organisational Patterns

Some ideas...
• Conway's Law
• Dedicated Project Teams

• May be temporary
• Teams sit together
• Make Progress Visible
• Regular Discussions

• Continuum of Regular/Small/Quick ->
Occasional/Large/Long

16

How Does It Work In Practice

Designing and building the campus of
the University of Oregon

Designing the museum to house the
“Mary Rose” - “agile” design

Building a group of houses in Mexico
(+ describes a theory of house building)

The Linz Cafe

17

The Nature Of Order
An Essay on the Art of Building and the Nature of the Universe

The Phenomenon of Life

The Process of Creating Life

A Vision of a Living World

The Luminous Ground

18

Interlude

Parts of Christopher Alexander's work has already
had an influence on software

• Patterns and Pattern Languages

Some other parts could also be ripe
• Agile design ideas
• Pattern discovery methods from “Notes”?
• The Nature Of Order (will let you know)

Is there a deep analogy at work here?
Notes only mentions “design”

Other ideas from the world of architecture?...Time

19

Inspiration

"Many seem to treat it as a book about systems and software design."

Stewart Brand
How Buildings Learn:
What happens after they're built

Whole Earth Catalog (1968), Hackers Conference (1984)
(Coined the phrase “Information wants to be free”), The
WELL (1984), Global Business Network (1988), and The
Long Now Foundation (1996)

On virtually every page there's something that reminded me of software development.
Keep this in mind as I introduce some of these ideas
Places with more info
http://sb.longnow.org/Home.html
http://en.wikipedia.org/wiki/How_Buildings_Learn
http://www.gyford.com/phil/writing/2004/10/24/how_buildings_le.php

http://sb.longnow.org/Home.html
http://en.wikipedia.org/wiki/How_Buildings_Learn
http://www.gyford.com/phil/writing/2004/10/24/how_buildings_le.php

20

Flow

“Flow, continual flow, continual change, continual
transformation” Rina Swentzel on her home village

Buildings almost never adapt well, but they always
adapt because of the changes around them

“Form ever follows function” - Louis Sullivan 1896
• Modernist founding idea.
• Relies on fallacy that we can anticipate function

“We shape our buildings, and afterwards our
buildings shape us” - Churchill
• Eg Parliament – deliberately small, two sided room
• But missed “...then we shape them again, ad infinitum”

21

Flow 2

Change forces change
• social changes forced kitchens to change from servants

lair to middle class entertainment focus;
• garages built for cars (and later for computer start-ups)
• introduction of the TV
• change from long-term nuclear family – still adjusting

More is spent maintaining old buildings over time
than building new ones; eg Norwich's churches

Three forces influence choice of solution
• Technology, Money, Fashion

“We are convinced by things that show internal complexity, that
show the traces of an interesting evolution” - Brian Eno

22

Shearing Layers

Duffy - "Our basic argument is that there isn't any such thing as a
building. A building properly conceived is several layers of longevity of
built components"

Separation of Concerns In The Time Axis

23

Different Rates Of Replacement

Replace after:
• Structure - > 50 years
• Services – 10 years
• Space Plan – 5 years

2008 13 18 23 28 33 38 43 48 53 58 63 Total
0

0.5

1

1.5

2

2.5

3

3.5

4

Space Plan
Services
Structure
Cumulative

Cost (A):
• 1.0
• 0.2
• 0.1

What if you had to rebuild structure to plug in a TV?

Cost (B):
+ half the next

layer2008 13 18 23 28 33 38 43 48 53 58 63 Total
0

1

2

3

4

5

6

7

8

Space Plan
Services
Structure
Cumulative

24

Software Shearing Layers

http://systemicbusiness.org/pubs/2000_IBM_RC21694_Simmonds_Ing_S
hearing_Layers_Info_Sys_Dev.html

“In this paper we respond to the observation that systems are subjected
to qualitatively different scales and rates of change, and should
consequently be constructed to adapt in "shearing layers." This
observation applies equally to social systems such as business (or other)
enterprises, and to the software systems that they use.”

Software is written to meet a set of requirements – from the
users and their needs, and the wider environment.

Fundamental requirements change very occasionally; more simple things
change more often; small details rapidly

 All requirements change but at different rates

Conway's Law – team communication boundary adapts slower

25

Low Road

Artists in lofts; Factory warehouses; Small business units – expand
into next door (and back); Technology incubators; MIT building 20;
Small houses; Extensions

• Quick
• Cheap
• Unplanned
• Adaptive

• Small
• Incremental
• Short term horizon
• Disposable

We have a track record: computer start-ups in garages and sheds
• Apple, Hewlett-Packard, DisplayLink

26

Low Road Examples

I found a joke site “Mobile Homes Of Mississippi”, but has some fascinatingly varied
homes and adaptations: http://www.drbukk.com/gmhom/gmindex.html

Daniel Friedman saw a splendid adapted mobile home in Rhinecliff NY, north of
Poughkeepsie where IBM has a factory and research lab. Picture at
http://www.inspect-ny.com/structure/mobileinspections.htm

http://www.drbukk.com/gmhom/gmindex.html
http://www.inspect-ny.com/structure/mobileinspections.htm

27

Low Road Software

• Shell scripts, batch files
• Command pipes
• Simple command line tools to do a job

• Eg Build scripts, Update Version Number script
• Details are often unique to you

• Office Automation
• Macros
• Emacs?
• Hardware: Cambridge Coffee Pot

Quick, Cheap, Unplanned, Adaptive, Small, Incremental,
Short term horizon, Disposable

28

High Road

Chatsworth House
Presidential Houses: Mount Vernon, Montpelier, Monticello
London Library, and Boston's Athenaeum

• Slow change
• Long term commitment
• High quality to “set the standard”
• Planned
• Constrained (but adaptive within)
• Big vision
• Main building phase, then incremental change,

occasional rework

29

High Road Example

Founded in 1546 from Michaelhouse
(1323) and King's Hall (1317)

30

Great Court N and E Ranges

31

Great Court S and W Ranges

32

Great Court Clock “High Road”

• King's Gate dated from 1428-32
• Nevile's plan for Great Court

around 1600
• Moved tower back 30m to fit

between the library and the new
chapel. New floor and clock
added in 1610. Is a real squeeze,
and range is not square.

• Restoration in 1988 reported
evidence of it being rather
carelessly and hastily
reconstructed, and is something
of a “lean-to” against the chapel,
and blocks the west window

33

High Road Tweaking

34

More High Road Tweaking

35

High Road Long View

Avenue of Lime Trees Replacements

36

Homework

• 1994 Doom patch - The Unholy Trinity
Steve McCrea, Simon Wall, & Elias Papavassilopoulos

http://www.youtube.com/watch?v=j1u6QZ_KiXU

http://www.youtube.com/watch?v=j1u6QZ_KiXU

37

High Road Software

Slow change, Long term commitment, High quality, Planned, Constrained
(but adaptive within), Big vision, Main building phase, then incremental
change, occasional rework

Most commercial software
• Long term need; Upgrades for support agreements
• Architectural vision; long term developers (!!!)
• Main development, incremental improvements,

occasional major reworking

How does Agile development fit in?
Pushes us towards Low Road adaptivity
• Small scale tends towards Low Road
• Larger scale High Road structure, Low Road tweaks

38

No Road

Note that Low and High Road are defined in terms
of how they change over time to adapt to changing
needs

No Road architecture steps outside such petty
concerns and just doesn't work or adapt very well

Lots of bad Modern Buildings
• Leaky roofs
• Inflexible rooms, layouts, etc
• Services built-in – shearing layers fused
• Technological “fixes” that don't workT5

39

“All Art Is Quite Useless”

Problem of architecture as “Art” - doesn't feel it has
to be useful or usable

Art must experiment; most experiments fail
Art is of the moment; the moment passes; but might

come back as retro!
Awards are based on photographs, not use

• Pretty façade not practical interiors
“If a pleasure-giving function predominates, it is

called art; if a practical function predominates, it is
called craft” - Henry Glassie

Art vs Craft vs Engineering Discuss

40

Failing Methodology

Speculator commissions; Architect designs,
adjusted though planning permission; specialist
engineers plan; building contractor +
subcontractors build; occupied by Facilities
Manager, Landlord and Users

Something gone wrong, want to change something?
Who do you talk to?*

* Lawyers and bank managers

41

Keep Them Involved

Pay architects a retainer to come back
• Make it worth them to say “No, not yet”
• Make it worth it to them to make things changeable

• Avoid the obsession to get it right first time

“You never go back. It's too discouraging” - anon
architect

Post-Occupancy Evaluation
Learn from your successes and failures

42

Japanese Design-Build

One-stop design-build-manage firms
Eg http://www.kajima.co.jp

Collaboration and long-term commitment by the
same team. When problems occur, single point of
contact and can talk to the architect/engineer etc
and adjust

Life-cycle management:“Today the most salient
trend of commercial properties is the shift from the
so-called "scrap and build" to operations and
maintenance.”

http://www.kajima.co.jp/

43

No Road Software

• Large IT projects
Very hard to change the design if it doesn't work in

practice

• 4G Languages?

• “Magazine Technology”
Looks good in articles, demos, and marketing

presentations, but does it actually deliver

• Waiting for GodotLonghorn
“Nothing is delivered. Twice”

• Specialisations without teams – “over the wall”

44

Piecemeal Growth

Alexander – The Oregon Experiment

Instead of a large-lump development
(“replacement”), do large and small scale changes
over time (“repair”)

Allows learning from what works and what doesn't –
accepts mistakes will happen, and allows them to be
repaired

“Maintenance is learning”

45

Piecemeal Growth Example

http://commons.wikimedia.org/wiki/Image:National_Gallery_1st_floor_plan.gif

46

Vernacular

Doing something new gives plenty of opportunities
to get things wrong

Take a shortcut through the design process by
copying from what's around you that works

• Pre-constrains the solution – makes it more
manageable

• Fits in and is familiar
• Patterns are pre-canned solutions

47

Software Vernacular

• User Interfaces
• Quite a bit of fashion
• “I want one like that”

• Do things in the One True Style
• Python

• Do things in your local style
• STL or own library
• My Handle generator template
• Asynchronous thread engines

• Requests in via message queue
• Raising events

• Patterns are pre-canned solutions

48

The Addition System

Lim Jee Yuan
 The Malay House
Patterns plus an order to
apply them generates a
house

49

Software Addition

Generative Pattern Languages
• Tiny pattern-steps

• Different orders create different designs
• Generate all possible using random walks

• 85 ways to tie a Tie
• Richard Harris' knot article in Overload 84

Incremental releases
New features added on
Get value in stages

Frameworks?
Dynamic Addons and plugins

50

Satisficing

Satisficing is a decision-making strategy which
attempts to meet criteria for adequacy, rather than
to identify an optimal solution

Cybernetics - optimise costs, including the cost of
working out the solution

Doesn't try to solve problems perfectly, it fixes them just enough
...and keep on adjusting and making a bit better each time

Changes encode the needs and aspirations of the
occupants over time

Evolution, adaptation.

51

Software Satisficing

• Multiple clients can pull your software in different
directions – how are you going to reconcile them?

• Modest tweaks – better (for now) but check risk
• Steps that improve bit by bit

• But you need to accept when it needs radical overhaul
• Accepting Technical Debt

• Pricing models; Discounting; Opportunity cost
• It's already happened:

Software archaeology
Debugging - “Why did they do that?”

52

Predicting The Future

All design is prediction

All predictions are wrong

53

Solving Problems

Architects do “Programming” - talking to users to
find out what problems they'll need to solve

Peña, Parshall, Kelly - Problem Seeking

Many buildings are brilliant solutions to the wrong problem
Good intentions, but do the users actually know what will happen? “Whatever the

client says will happen, won't”.
Or wishful thinking -“put in fibre-optics for when broadband comes in”, and

wireless makes it obsolete

Good idea! But...

54

Scenario Buffering

• Don't make a plan, make a strategy
• “Accommodate perversity”
• don't design for an expected future, design for a

range of futures
• Scenarios explore the problem domain
• Wild scenarios question assumptions

Solution?

55

Scenario Buffering Diagram

Traditional Building Scenario-Buffered Building
Scenario
Planning

Construction

Strategy

Actual Use

“Oh, that one”

Design

Occupancy

Programming Programming

Design

Plan

Construction

Occupancy

Actual UseExpected Use

“Wrong!”
Possible Uses

56

Scenario Methodology

• Interview people to pick up vocabulary, major
issues, and expectations of the future

• Find focal issue - ”what keeps you awake at night”
• Explore “Driving Forces”, and rank them in

importance and uncertainties
• Add reliable “predetermined elements”
• Identify “Logics” - basic plot lines
• “Think the unthinkable” introduces novelty
• Devise a strategy to accommodate all scenarios
• “Robust” vs “adaptive” strategy
• Find “Early Warning” indicators of failures

57

Keeping Your Options Open

• Chess – favour moves that increase options; shy
from moves that end well but require cutting off
choices; work from strong positions that have
many adjoining strong positions

• Buildings – overbuild structure for future
expansion; excess service capacity; separate high
and low volatility areas; use local materials –
easier to match or replace; medium size rooms
are most flexible; add storage

“We overestimate technology in the short term and
underestimate it in the long run”

58

Design In Stages

• Loose fit buildings – expand into next door
• Not enough time, or money? Some highly planned

and finished areas, some “raw” - unfinished but
usable, to be finished later according to need and
money

• A building is not something you finish. A building
is something you start.

• “Time is the greatest innovator” - Bacon
• “Pave where the paths end up”

59

Build Over Time

• Start conservative, become radical
• You can specialise from the general, not vice versa

• Continual house
• Build a small but liveable core for the cost of the normal

down-payment
• Instead of paying interest, invest that money to grow

the house bit by bit
• Grows with you in the long run

• Flexible space
• Victorian terraces

• wide hallway allows many different adjustments
• generic rooms opening onto each other & hallway
• avoid overspecialisation

60

Feel Your Way Forward

No one can visualise how it will look and feel
Construction ought to be a long process of cut-and-try.
Alexander “You are constantly finding out about the

building while constructing it, and what you will find out
is inherently and necessarily unpredictable”

Failing small, early, and often, leads to succeeding
long term and large scale
Maintenance, correction of faults, and improvements
should all blend together

Do something for more than one reason
• Immediate purpose
• Serve larger goal of “Healing the whole”
• Prepare for next improvement

61

Wabi Sabi

Japanese artistic virtue - “The recognition that in a
beautiful thing there is always some part which is
lovingly and carefully done, and some parts which
are very roughly done”

Leave some things unfinished
 Ready for unexpected uses
Once things are “finished” still lots of tinkering to get things right
Distrust “optimal” solutions
 Need a margin of error for surprise and change

62

The Fourth Dimension

Synchronic How things fit together now

We have lots of tools for the former, very few for the latter
• Check-in comments and change logs
• Subversion “Blame” - Perforce Time Lapse View
• “Animated” UML?
• Apple's Time Machine

Diachronic How things developed over time

People tend to think Synchronic
Diachronic is almost always more revealing

63

One Offs And Change

Software development is about designing something
new each time
• Not always - some fields are well understood. But they lend

themselves to automatic generation...using a new tool that needs
to be written

Requirements often change, or your understanding
of them does

Bug-fixing, introducing new features, and changing
old ones are a major ongoing process in software

Rarely throw away and restart – too expensive

Ju
st

Lik
e B

uil
din

gs

“Don't Scrap, Adapt”

64

Analogy

Software design and building design seem to be
very similar. Why?

• Design something new, not mass manufacture
• Too complex to get right first time

• Synthesis Of Form – applies to any design
• Adjust rather than start anew
• Requirements change over time - Shearing layers
• Low Road/High Road styles and approaches
• Is never finished – adapted and extended as

needs change

65

Conclusion

Similar design and temporal dynamics in
Architecture and Software Development
result in a deep and productive analogy

This is why there are so many ideas that can be transferred between them

What software design technique will you
apply to to your next building project?

66

Last Word

Alexander – The Nature Of Order, Vol 1
“The Phenomenon Of Life”

If you accept the view of order that I am presenting, you will find it has
unexpected intellectual results. It modifies our view of the physical
universe and the way the universe is put together. Thus, what starts
out as a way of understanding architecture ends up, also, as a view
which may affect our understanding of physics and biology.

PS. Dan Cruickshank's Adventures in Architecture 9pm BBC2
 Grand Designs 9pm Channel 4

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

