
Network programming

Roger Orr
OR/2 Ltd

Writing programs in a networked world

Goal of this presentation
 Many current programs use network

communications – whether implicitly or
explicitly

 What does – or should – this change in
the way we write our programs?

 We'll look at a number of questions that
should be asked when using networks

Why use a network?
 There are many reasons for using a net-

work
 Consumer of remote data or services

 Time dependent
 Expensive to copy

 Producer of shared data
 Access to different machines
 Reduce need for physical proximity
 Better performance
 Improved resilience

Why use a network?
 There are different types of network, eg:

 Local LAN
 Probably TCP/IP

 Corporate intranet
 LAN
 WAN

 Internet
 Mobile
 Interplanetary Internet

Why use a network?
 There are also communications not involv-

ing a network
 Leased line
 Serial line
 USB

 Various parts of this talk are also relevant
to these scenarios

What the end user wants
 The end user of the program generally

wants transparent use of the network
 Indistinguishable from an isolated program
 Problems should be sorted out without need-

ing user interaction
 This is not totally achievable...
 Hiding the network at a higher level API

level can also be a mistake

Costs of a network
 The main areas where a network causes

issues are
 Failure modes (connection and remote nodes)
 Troubleshooting
 Limitations of physical laws (latency)
 Security
 Scalability
 Interoperability (standards and versioning)

Costs of a network
 Address these issues up front
 It can be expensive (or even impossible)

to solve them later
 Making a program 'network aware' will

usually affect the interface as well as the
implementation

What can go wrong?
 A stand alone program can be debugged

in isolation, or off-line from a dump file
 Networking adds the communications

channel and independent processes
 Failure modes are more complex
 Partial failure is much more common

 Part of the system is down
 Reduction of performance

 Remote failures may not be in our control

Reducing the pain
 The network interfaces are key to good

support and maintenance
 Capturing network traffic
 Text is easier to read than binary
 Avoiding complicated cross-process state
 Proxies and stubs

 Think about what pieces of the system
should still work without the whole

Reducing the pain
 Consolidated tracing/logging

 Machine/process identification
 Universal timestamps
 Data reduction

 The end user doesn't want to know about
the network, but the support engineer
does

 Can you simplify the configuration?
 How do you test failure modes?

Reducing the pain
 Some examples...

 Grid [save network packet on failure; log client
name and machine; support for local mode]

 I&K [everything is text, so can easily be
saved/replayed; central logger]

Increasing the pain
 An example...

 Binary protocols across a number of servers
 It was not apparent which calls were local and

which ones were remote
 No documented design of call hierarchy
 Errors and exceptions transparently mapped

to local errors, or even silently consumed
 Configuration was sufficiently hard that some

developers couldn't get a local installation to
work

Troubleshooting
 Networks cause problems but do provide

a clean interface to resolve problems
 Network sniffers – for example Wireshark

(aka ethereal), tcpdump.
 Provide a complete trace of the protocol ex-

change at the lowest level
 Fault finding
 Performance analysis

 Can be hard to relate to application activity

Troubleshooting
 Proactive debugging – what is likely to go

wrong and what information will I need?
 Design communication components indepen-

dently from business logic
 'Ping' methods to separate connectivity issues

from application issues
 Ensure target details are logged (both IP ad-

dress + port number)

Limitations of physical laws
 Communication across a network will be

slower than that within a process
 The two main measures are:

 Throughput - the amount of digital data per
time unit that is delivered over a physical or
logical link

 Latency - the time taken for a packet of data
to be sent from one application, travel to, and
be received by another application

Limitations of physical laws
 Overall throughput is (roughly) the same

as the minimum throughput of each part
of the communication pathway.

 Additional throughput can often be bought
 Overall latency is (roughly) the sum of the

individual latencies
 Latency usually can't be reduced much

 Most non-technical people don't really un-
derstand the difference ...

A worked example
Example interface in Java

package multiple;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Contract extends Remote {
 String read1(String key)
 throws RemoteException;
 String[] readn(String... key)
 throws RemoteException;
}

A worked example
private void testSingle(String[] keys)
 throws RemoteException
{
 String[] result = new String[keys.length];
 for (int i = 0; i != keys.length; ++i) {
 result[i] = remoteObject.read1(keys[i]);
 }
}

private void testMultiple(String[] keys)
 throws RemoteException
{
 String[] result = remoteObject.readn(keys);
}

A worked example
Public class Server implements Contract {

 public String read1(String key) {
 return getData(key);
 }

 public String[] readn(String... key) {
 String[] result = new String[key.length];
 for (int i = 0; i != key.length; ++i) {
 result[i] = getData(key[i]);
 }
 return result;
 }
}

A worked example
 So what's the difference between using

read1 and readn?
 For one object

 A little more work to assemble an array of ob-
jects for readn

 A little more data to pass the network
 For multiple objects

 The loop is written once on the server rather
than once in every client

 Less requests to pass over the network

A worked example
 So what's the difference between using

read1 and readn?
 What if you get an exception?

 read1: only the bad requests fail – other data
is available

 readn: the whole request fails – may need
more work to enforce this for modifications

 Could expand the interface to return an
array of objects with failure status

A worked example

Local host

 java -cp . multiple.Client localhost

Single: 6.18 ms / Multiple: 6.60 ms
Single: 5.16 ms / Multiple: 5.57 ms
...
Single: 4.4 (sd 1.7) / Multiple 4.6 (sd 1.2)

A worked example

LAN connection

 java -cp . multiple.Client gordon

Single 5.7 (sd 7.4) / Multiple 5.3 (sd 3.7)
 What is going on here?
 Note the large standard deviations
 Even for one call little difference between the

'single' and 'multiple' methods

A worked example

A worked example
 The Nagle algorithm

 RFC 896: Congestion Control in IP/TCP Inter-
networks

 Solves the small-packet problem
 (1 byte packet, 40 byte header)
 Often what you want
 When it isn't it can really hit you badly

 Is this the problem?
 Can I do anything about it?

A worked example

Local host – multiple calls

 java -cp . multiple.Client localhost 10

Single: 28.6ms / Multiple: 3.5ms
Single: 26.0ms / Multiple: 3.4ms
...
Single: 28.5 (sd 7) / Multiple 3.7 (sd 1.6)

A worked example

WAN connection

 java -cp . multiple.Client tokyo
Single: 259ms / Multiple: 259ms
 java -cp . multiple.Client tokyo 2
Single: 517ms / Multiple: 259ms
 java -cp . multiple.Client tokyo 20
Single: 5.2s / Multiple: 261ms

Limitations of physical laws
 Will your solution be used with local, LAN

or WAN connections?
 Think about this at design time
 Do some simple arithmetic

 May need to instrument to get data
 Test early using the worst case
 Simulate the worst case

 Buy network simulators
 Use a simple proxy program

Example: database connection
 Reading several thousand records from

the database into cache
 When run remotely the server took over

eight minutes longer to start up
 Running a database remotely would have

been an expensive solution
 JDBC supports ResultSet.setFetchSize

 Using this pretty well restored the local per-
formance remotely

Security
 Accepting input across a network opens

up a number of security problems.
 Malicious attacks – principally on the In-

ternet but increasingly internally too
 Data 'leaks'

 Packet capture
 Data may be cached locally

 Authentication/authorisation

Security
 Security is a negative requirement – it is

hard enough to satisfy the more common
positive requirements

 Security usually conflicts with other goals,
such as supportability

 “There are few, if any, effective strategies
to enhance security after design”
 (Wikipedia)

Security
 Obfuscation is not a good security choice
 Standard mechanisms are generally safer
 Security is as strong as the weakest link
 However, the weakest link varies depend-

ing on access to the system
 “Ownership is root”
 Man in the middle attacks
 Danger of unsecured log files
 System Password changed to 'Friday1'

Security
 Take especial care with user input

 Cater for escaped characters/special strings
 Most database APIs provide automatic ways

to do this – always use them
 Check string lengths in C-style code
 Don't trust client side validation

User Security
 Authentication

 Who is the user
 How can we be sure

 Authorisation
 What is the user allowed to do
 Access control

 Auditing
 Who did what, when

 Non-repudiation
 It was me, I cannot tell a lie

User Security

 Often use LDAP access for company in-
ternal systems

 Database probably already exists
 Tools for many tasks already written
 Relatively cross-platform / cross-language

 Can be harder on the Internet – lack of
common infrastructure

 What might the user do with the data?

Security
 How does the system cope with overuse?

 Denial of service attacks
 'Black Monday' market days
 Run-away success of your product

 Design-in ways to handle such loads
 Couple of points are covered below

 Test the system behaves properly – the
component that fails may not be the one
you expected

Scalability
 Networked programs can give advantages

of increased scalability
 Run processes on separate machines
 Run multiple copies of key processes

 How do we ensure this works?
 Amdahl's law applies here – anything

done serially won't scale
 Additionally there is a cost sending the

work to another process

Scalability
 Identify the bottlenecks

 Little point in writing a complex multi-process
networked application to update a database if
the database is the limiting factor

 Ideal candidate tasks are independent
with small 'surface area' (network packet
size)

 Cache unchanging data locally
 Shared volatile data is more problematic

Scalability
 Establish some benchmarks using a simi-

lar network topology to that proposed
 Decide what is the right behaviour under

high load
 No special treatment (ostrich approach)
 Prioritize tasks
 Coalesce tasks
 Fail certain classes of task

 Web site falling back to text-only mode
 Database allowing simple queries only

Interoperability - standards
 Adopting standards for networking is a

good thing
 Good protocol design is hard - or so it seems
 A lot of corner cases to consider (holes still

exist in NetBIOS, DDE and FIX, for example)
 Lower level code libraries may exist
 Common protocols may already be supported

by protocol analysers

Interoperability - standards
 The Postel dictum:

“Be liberal in what you accept
 and conservative in what you send”

 Try to accept as wide an interpretation of
possible on input

 Try to stick to commonest cases on output

Interoperability - standards
 "The good thing about standards is that

there are so many to choose from"
(A. Tanenbaum)

 Avoid re-inventing the wheel (eg reliable
communication on top of UDP)

 May automatically provide possibilities for
cooperation

 Prefer higher level abstractions allowing
for multiple potential transport protocols

Interoperability - versioning
 Versioning will hit you and can be expen-

sive to identify and hard to solve
 Unless you have explicit control over both

ends you will end up connecting different
versions of the protocol at each end

 A full solution with backward and forward
compatibility is difficult: do you need it?

Interoperability - versioning
 Simplest non solution – no checks
 Can cause strange behaviour – for exam-

ple
 a new parameter is added to a method and

old clients implicitly pass in a null
 unrecognised messages may be ignored by

the server leaving the client in a pending state
 Artifacts from a rebuild do not communicate

with older objects – implicit versioning

Interoperability - versioning
 Simplest solution – check for and reject

any connection with the wrong version
 Prefer explicit up-front checks to avoid

 Delayed failure
 Callback failure

 This style means all programs must be
updated to the correct version simultane-
ously (and reverting can be hard)

 Must remember to change the version

Interoperability - versioning
 Multi version server-side solution – for ex-

ample allow clients to connect using the
current or the previous version

 Allows gradual rollout once the server-
side components are upgraded

 Increased burden on testing and can be
hard to ensure the previous protocol is ac-
tually supported consistently

 Must remember to change the version

Interoperability – versioning
 One useful subset is to add extra releases

that support changes in the protocol (eg
extra fields) but do not require them

 This allows two phase update
 Phase I - all components use the new pro-

tocol version but support both the old and
the new versions

 Phase 2 – change some components to
require the new protocol version

Interoperability example
 The SOAP mustUnderstand attribute
 Allows the new version to include some

mandatory changes and other optional
changes

 Examine the use cases of the interface as
may end up with an interface not actually
providing any useful functionality to older
clients

Interoperability - platforms
 Which network types?

 For example, will this only run on TCP/IP?
 Which Operating System?

 Word size and byte order issues
 Support for some protocols better than others

 Which language?
 Some techniques are inherently multi-lan-

guage (often using text-based protocols)
 Single language solutions may support wider

functionality (object transport, exceptions)

Interoperability - platforms
 Which language?

 Some techniques are inherently multi-lan-
guage (often using text-based protocols) and
some standards have multiple language bind-
ings

 Single language solutions may support wider
functionality

 Local/remote proxying
 Object transport
 Remote class loading
 Transparent handling of exceptions

Conclusion
 Network programming is becoming very

common but it needs to be explicitly
thought about at the design stage

 Failure modes (connection and remote nodes)
 Troubleshooting
 Limitations of physical laws (latency)
 Security
 Scalability

Network pr

Conclusion – questions
 What are the reasons for using a network

in this application?
 What might go wrong?

 What graceful degradation can we offer?
 How easily will it be to find and fix problems?

 What latency and bandwidth is needed?
 How are we handling security?
 What standards could/should we use?
 What versioning model will we support?

Network pr

