
SnowflakesSnowflakes
AndAnd

ArchitectureArchitecture
Steve LoveSteve Love

steve@steve@arventecharventech.com.com

Layer Cake

Presentation Layer

Application Layer

Data Layer

e.g.
Web Browser

Client UI
Spreadsheet

Do The Parts Fit?

Layered Architecture

"...all well structured object-oriented architectures have
clearly-defined layers, with each layer providing some

coherent set of services though a well-defined and
controlled interface."

(Grady Booch, "Object Solution", 1996).

Simple Systems

Comms

Storage

GIS

Messaging Processing

Protocol
Validation

Audit
Logging UI Policy/

Security

What's in an
application?

The Good, The Bad, The Ugly

● RigidRigid
● FragileFragile
● ImmobileImmobile

● CohesiveCohesive
● DecoupledDecoupled
● LayeredLayered

Is it really that simple?

*ities
● Quality
● Maintainability
● Flexibility
● Adaptability
● Generality
● Comprehensibility
● Extensibility

● Utility
● Stability
● Testability
● Substitutability
● Clarity
● Brevity
● (Re) Usability

SIMPLICITY

Silver Bullets

Conventional wisdom suggests Conventional wisdom suggests
that there are none...that there are none...

...but there is ...but there is
““One Thing” One Thing”

which can aid software which can aid software
designdesign

Frontier Arrangements
Comms

Storage
GIS

Messaging

Processing

Protocol
Validation

Audit
Logging

UI

Policy/
Security??

Frontier Arrangements
Comms

Storage
GIS

Messaging

Processing

Protocol
Validation

Audit
Logging

UI

Policy/
Security

Dependency Horizon

Circular Dependencies

Interfaces

Dispatcher
Interface

Action 1

Dispatcher

Dispatchable
Interface

Action 2

The Dependency Inversion
Principle

● High level modules should not depend upon High level modules should not depend upon

low level modules. Both should depend upon low level modules. Both should depend upon

abstractions.abstractions.

● Abstractions should not depend upon details. Abstractions should not depend upon details.

Details should depend upon abstractions.Details should depend upon abstractions.

Robert C. Martin

The Counter Example:
Singleton

Upside Down Inside Out Back to FrontUpside Down Inside Out Back to Front

It's the antithesis of Detail Depending on It's the antithesis of Detail Depending on
AbstractionAbstraction

Upside Down, Inside Out
● Hard-wired Dependency
● Dependency from within
● Testing is difficult
● Rigid, Fragile & Immobile
● Unpredictable Ownership
● Unpredictable Lifetime
● Multiple threads???

Back to Front

Destruction-Managed Singleton:

INTENT Ensure the destruction of interdependent
singletons in the correct order, and guarantee that there
are no attempts to use previously deallocated objects.

Evgeniy Gabrilovich, C++ Report 24/2/2000
http://www.adtmag.com/joop/carticle.aspx?ID=325

Unsingleton

● Give objects what they want, don't let them take it for
themselves.

● What client code doesn't know about the
implementation of a service can't hurt it.

● Don't sweat the small stuff – the answer to long
argument lists is NOT Singleton!

Design to an Interface
● “interface” keyword
● COM/CORBA – IDL
● C++ Pure Virtual Base Class
● Duck-typing : C++ templates, Ruby, Python
● C# and Java Generics

ISubstitutability

IInheritance

Polymorphism by Dynamic Dispatch
(the conventional model)

Virtual Functions

IGenericity

Polymorphism by Generics
(Duck typing)

Containers
Iterators and algorithms
Traits and Policy classes

IOverload

Polymorphism by Overloaded Functions

Member Function Overloading
Global functions and operators

ICoercion

Polymorphism by Conversion

Implicit Casting
Constness

Substitution Means The Same

Polymorphic Substitutability Applied

Testability

Test Independent Parts Independently
Don't get hung up on the small stuff

Interfaces == Substitutability
Substitutability underpins Mockery

Design to an Interface

Parallel Development

Define an interface for the component(s)
All teams/developers work to the interface

Continuous Integration
Testing (again)

3rd Party Parallel Dev

● Define the interface you need
– You can always “Adapt” it later

● Create a Mock for the unavailable component
– Just like testing!

Adaptability

● New requirements arise
● The app and other components depend only on

interfaces
● Plugging-in a new component just like an existing one is

trivial

Flexibility, Generality and Reuse
● The false idols of OO?
● Interfaces provide the means of re-use
● Component architecture provides the means of

flexibility...
–Make it talk to some wire-feed instead of the UI

● and Generality
– Use it in a different application or context

Segregation & Selfishness

Clients should not be forced to depend on
interfaces or components they don't use.

Focus design on what an object wants, not
what it can use.

“Don't Call Us, We'll Call You”

On Singleton

● Adapt the interface
–Make an interface to publish
– The implementation instantiates the Singleton
– The rest of the app uses the interface

Dependency Injection

● Spring and its fellows
– Sometimes a good idea
–More often than not, sledgehammer for a walnut

● Service Oriented Architecture
● PfA is the root-solution

Hexagonal Architecture

Application

GIS

User

Comms

Interop

Logging

Database

Email

Messaging

Ports and Adapters

● A Port is an API
– Exposed by the app
– 1 or more interfaces

● An adapter is a
component
– Plugs into a port

exposed by the
application.

Application

GIS

User

Comms

Interop

Logging

Database

Email

Messaging

Adapters

● Are substitutable for adapters fitting the same ports
– A mock database instead of a real one
– A batch script instead of a UI

● May well be plug'n'play
– But that depends on many things – most

importantly, is it sensible?

A Step Further

What if each adapter
exposes its own ports?

Any component can
communicate with any

other – the components
become the API

UI

ProtocolsSecurity
Policy

Logging

DB

Processing

Comms

Messaging

GIS

Back to Circular Dependencies?

Interfaces form the separation points.
Circular dependencies mean the design is

wrong (still)!

Snowflake

UI

Protocols

Security
Policy

Logging

DB

Processing

Comms

Messaging

GIS

Interop

● Solid diamonds are
implementations

● Hexagons inside are
interfaces

● Diamonds depend only
on hexagons.

● Hexagons depend only
on other hexagons

The Return of the App

Somewhere there needs to be a part of the
program which creates the concrete

instances of the adapters and manage their
lifetimes with respect to each other.

Substitutability Redux

App can choose which implementations to
instantiate – tests, real, alternate

The Main Attraction

“Main” is the application.
Manages object instantiation and lifetime.

Maybe another level of indirection (e.g. Spring)

Project Organisation

Each component consists of interface and impl.
Separate project for each (static lib/assembly)

In C++

int main()
{
 auto_ptr< logging > log (new file_log);
 auto_ptr< comms > c (new net_comms);
 auto_ptr< messaging > msg (

new buffered_messaging(log.get()));
 msg->send(c.get(), message("Starting"));

 return 0;
}

In C#
int Main()
{

using(Logging log = new FileLog())
{ using(Comms comms = new NetComms())

{ using(Messaging msg =
new BufferedMessaging(log))

{
msg.Send(comms, “Starting”));

}
}

}
return 0;

}

Paramaterise From Without

Define abstractions
Program to interfaces
Interface Segregation

Selfish Objects

Steve LoveSteve Love
steve@steve@arventecharventech.com.com

SnowflakesSnowflakes
AndAnd

ArchitectureArchitecture
Steve LoveSteve Love

steve@steve@arventecharventech.com.com

This talk is about architecture and design in software.

Topics covered include the roles of architecture and design, application
layering, what exactly is meant by “application”, and how the granularity
of a design model influences its implementation.

We will look at how best to capture some of the abstractions of an
application, and how they can be easily represented by abstract
classes or interfaces. We'll also see how software designed this way is
more decoupled, which helps testing, and in turn how designing for
testability helps design.

Finally, all will be revealed about why the talk is about snowflakes!

Layer Cake

Presentation Layer

Application Layer

Data Layer

e.g.
Web Browser

Client UI
Spreadsheet

It's probable that most programmers know this diagram, or one very
much like it. It represents separation of concerns between the major
components of a system, and is not necessarily a UI, a DB and a
“Business Logic” layer.

This model is very course grained, and very often software architecture
only goes as far as a diagram like this. It does not capture the different
aspects of what an application is, which is much more important, and
this is what leads to spaghetti code and the “Big Ball of Mud”.

In addition, it's long been an industrial-strength problem that business
logic leaks into UI and Database code layers, which leads to
untestable, unchangeable software which must be attached to the
database and can only be driven from its UI.

So why should the UI and database get special treatment?

Do The Parts Fit?

The layer cake design also presupposes that the presentation layer
must always communicate with the data layer via the application – that
somehow the application is the right abstraction for this. What if it
makes perfect sense for some direct communication? The application
can end up being no more than an artificial device for the UI to get data
from a database, or a screen from an instrumentation monitor.

The 3-tier architecture may not be appropriate for your application.
Ultimately, software architecture is about much more than a drawing –
but all too often, that is what is referred to as “the architecture”.

By having a model that represents high-level abstract modules (the UI)
looking down through progressively more detailed layers, we
presuppose that the application really is decomposable that way. What
results is unnecessary complexity, and in extreme cases, code that
subverts the intended design – just to get the data.

In this talk we'll look at a different approach to capturing and describing
the architecture in a much more fine-grained way, resulting in a much
more open and extensible system – by design.

In the end, there are more than 3 ways to skin cats, cook eggs, and
design software.

Layered Architecture

"...all well structured object-oriented architectures have
clearly-defined layers, with each layer providing some

coherent set of services though a well-defined and
controlled interface."

(Grady Booch, "Object Solution", 1996).

The separation of concerns into layers is not entirely redundant. It is
the granularity at which this separation – the layering – is done that is
commonly the problem. If you end up with 3 balls of spaghetti, that is
hardly better than one big one!

Simple Systems

Comms

Storage

GIS

Messaging Processing

Protocol
Validation

Audit
Logging UI Policy/

Security

What's in an
application?

The 3 tier architecture has this thing called the “Business Logic”,
“Application Layer”, or whatever, but what does that really mean?

Applications generally are made up of several – for want of a better
word – services, communicating with each other, and quite separate
from the UI and the Database, yet still part of the whole.

Instead of layering the architecture, it makes more sense to separate
the services as their own abstractions, to capture the significance of
various aspects of the application's needs, for example message
handling, network communications, protocol handling, outputs other
than a window on a UI.

Even simple systems have some inherent complexity, to a lesser or
greater extent, and actually capturing that (necessary) complexity is
helpful in characterising the services needed.

Of course a separate question is needed about whether the correct
abstractions are captured. Saying an application needs TCP/IP
communications over a wireless network is probably too specific – that
communications method should have a higher level of abstraction so
that the app can interface with it sensibly at the API level.

The Good, The Bad, The Ugly

● RigidRigid
● FragileFragile
● ImmobileImmobile

● CohesiveCohesive
● DecoupledDecoupled
● LayeredLayered

Is it really that simple?

So what makes a design good or bad? Robert Martin, in his paper “The
Dependency Inversion Principle”, describes bad designs as Rigid,
Fragile and Immobile. Rigid in that the design is hard to change (and
ultimately the realisation in code is hard to change, too) because there
is a network of dependencies forming a rigid structure; fragile in that
changes in one part of the system causes unexpected problems in
separate parts of the system; and immobile because it's difficult to
disentangle parts of the system for (re) use elsewhere.

By contrast, then, we look for cohesion, decoupling and layering in
good designs. That's all very well, but how can we measure them?

Identifying good and appropriate abstractions leads to cohesive
components. Decoupling comes from ensuring that components have
a clearly defined purpose (cohesion) and stick to it. Layering is about
how an application's deployment is realised, for example client-server
or highly distributed applications have boundaries beyond the 3-tier
model we've seen.

But can it really be that simple? The idea of cohesive, decoupled
components is certainly not new, and yet it still appears difficult to
achieve – spaghetti code and big balls of mud are recurring themes in
the software development world.

*ities
● Quality
● Maintainability
● Flexibility
● Adaptability
● Generality
● Comprehensibility
● Extensibility

● Utility
● Stability
● Testability
● Substitutability
● Clarity
● Brevity
● (Re) Usability

SIMPLICITY

It's commonly thought that if your software design conforms to lots of
these ities, the design is good. Certainly many of these aspects go into
making for good design – testability, clarity and adaptability all spring
immediately to mind as very important ideals. How are they measured?
Quality is a very subjective notion, and re-usability is held up as the
primary false idol of OO.

Generality is also not necessarily a good thing. The principles of agile
design – and XP in particular – suggest making designs less general:
you aren't gonna need it. Functionailty gets added only when it's
required. Overengineering is a common mistake in many endeavours,
not just software development.

In the end, brevity leads to clarity, substitutability to adaptability and
testability to maintainability.

Is there one ity missing here? I'm certain there is – one which captures
many of the others already shown.

Simplicity.

Silver Bullets

Conventional wisdom suggests Conventional wisdom suggests
that there are none...that there are none...

...but there is ...but there is
““One Thing” One Thing”

which can aid software which can aid software
designdesign

So is there one thing we can attack the problems of software design
with? We all know there are no silver bullets – software design is not a
werewolf to be slain, but a much more complex and detailed problem
for which there is no one single answer...

If we think about getting the architecture right, then good design
follows. With a good design, and a bit of due diligence and discipline
we can implement the software according to the design...and voila!
Magic software. Well, not quite. But it's a start.

Good architecture is indeed the first step in producing better software.
In order to think about architecture, we need to take a step inward and
start to see some of the details – the abstractions needed. There
seems little point in creating a fabulous multi-tier, distributed (or
distributable) architecture for a washing machine control program. By
identifying the abstractions we need, this information feeds back into
what sort of architecture we need, and so design influences
architecture. There's more to it than that, of course – no silver bullets,
remember? - but at the design level, if we identify the right abstractions
at the right granularity we have gone a long way towards producing a
system.

Frontier Arrangements
Comms

Storage
GIS

Messaging

Processing

Protocol
Validation

Audit
Logging

UI

Policy/
Security??

The right level of abstraction is a hard thing to achieve. We've already
talked a little about what components might exist, and here are some
examples. What we need to identify is how they communicate together
to form an application.

Having identified our abstractions -we'll assume that the examples
shown here are appropriate – the next step is to define the interfaces
between them. A design may be highly cohesive and well decoupled,
but if the components don't communicate, they aren't a system!

There must be some restraint, however...

Frontier Arrangements
Comms

Storage
GIS

Messaging

Processing

Protocol
Validation

Audit
Logging

UI

Policy/
Security

Maybe it makes perfect sense for each of the communication channels
shown – and more! - to exist. In some cases, there may be a need for
bi-directional information flows between 2 or more components, and
this leads once again to a highly coupled design.

Here we have the exact opposite of a layered approach, which is
intended to show a directional relationship between parts of a system –
the presentation layer communicates with the application, which in turn
communicates with the data layer, percolating data back upward.

The main issue that needs addressing in both the layered model and
this component model is that of dependencies.

Dependency Horizon

Dependencies are transitive, which is to say that where component B
depends on component C, anything which is dependent on B also
depends upon C. This is called the dependency horizon, and clearly,
the further away it is, the more tightly coupled a system is.

A depenency horizon which is very far away becomes extremely
difficult to manage, and runs the risk of introducing circular
dependencies which may be very difficult to resolve.

C++ with its separately compiled modules has facilities to mitigate the
difficulty in breaking circular dependencies – forward declarations,
handle-body idiom, etc., but in languages such as C# and Java,
circular dependencies between units are forbidden, triggering compile-
time errors.

Circular Dependencies

The double-dispatch pattern is a prime example of a circular
dependency. The main dispatcher object accepts other objects by
reference to their base class, and asks the object to call it back on a
method overloaded for the concrete instance of each type it knows
about.

In this way, a dispatchable object has a dependency on the dispatcher
itself, each concrete dispatchable object also has that dependency,
along with the inheritance dependency on the base class, and the
dispatcher object needs to know about (depends on) each concrete
type as well as the base class.

Resolving this dependency circle can be difficult in a naive way.

The answer to the problems here is to see the required abstractions,
and to see where to add the proverbial extra level of indirection.

Interfaces

Dispatcher
Interface

Action 1

Dispatcher

Dispatchable
Interface

Action 2

By introducing an interface for the dispatcher, the dispatchable base
class (interface) requires a dependency only on that interface type.
Each concrete action also needs to know about only the interface.

This is the key principle in breaking circular dependencies, and as a
concept can be expanded to bring the dependency horizon much
closer to an interested object.

The Dependency Inversion
Principle

● High level modules should not depend upon High level modules should not depend upon

low level modules. Both should depend upon low level modules. Both should depend upon

abstractions.abstractions.

● Abstractions should not depend upon details. Abstractions should not depend upon details.

Details should depend upon abstractions.Details should depend upon abstractions.

Robert C. Martin

In his “Dependency Inversion Principle” Robert Martin describes the
basic principles of managing the dependency horizon.

It describes an essentially layered solution, but not at the course-
grained level we have previously looked at, more at the service level –
the facilities required by a simple component which would form part of
a whole application.

It maintains the idea that high-level modules should “look down”
through successively more detailed interfaces, that details should filter
upward through clean and cohesive APIs. The APIs themselves are
presented as true interfaces, allowing the dependency horizon to be no
further than a single dependency away.

The Counter Example:
Singleton

Upside Down Inside Out Back to FrontUpside Down Inside Out Back to Front

It's the antithesis of Detail Depending on It's the antithesis of Detail Depending on
AbstractionAbstraction

By contrast, Singleton is a dependency representing detail – and it is a
direct dependency from within implementation code. It is most certainly
not abstract.

The main problem – if there is a main one – with Singleton is the
reversal of dependency it introduces. Not only is client code dependent
on the Singleton itself, the client code uses the Singleton directly,
without any facility for abstracting the service(s) provided by the
Singleton. (OK so there are ways of providing an abstract interface to
Singleton objects, which we'll look at in a while, but that really is solving
the wrong problem).

Upside Down, Inside Out
● Hard-wired Dependency
● Dependency from within
● Testing is difficult
● Rigid, Fragile & Immobile
● Unpredictable Ownership
● Unpredictable Lifetime
● Multiple threads???

The dependency introduced by Singleton is pernicious because it hides
inside client code with very few clues to expose it. Client code that
uses a Singleton object has the dependency hard-wired in to it, leaving
few opportunities to break the dependency and have that code use
something different.

This can make testing such code difficult, because it requires access to
the Singleton, which will often represent some “big” aspect of a system
– database, logging facility, UI, network – of which “there can be only
one”. Testing independent parts independently of all other parts of the
system becomes very challenging.

The Singleton fails all three of Robert Martin's tests for bad design, and
worse, introduces some issues of its own.

Back to Front

Destruction-Managed Singleton:

INTENT Ensure the destruction of interdependent
singletons in the correct order, and guarantee that there
are no attempts to use previously deallocated objects.

Evgeniy Gabrilovich, C++ Report 24/2/2000
http://www.adtmag.com/joop/carticle.aspx?ID=325

Interdependent Singletons?

Ensure their correct destruction?

Not using recycled objects?

Maybe this is a solution looking for a problem. The next step, of course
– and one which is advocated and explored in the paper - is to make
the DMS (Destruction Managed Singleton) a ... yep! - Singleton.

So who then manages the destruction of the destruction managed
Singleton?

Unsingleton

● Give objects what they want, don't let them take it for
themselves.

● What client code doesn't know about the
implementation of a service can't hurt it.

● Don't sweat the small stuff – the answer to long
argument lists is NOT Singleton!

Code should work using what it has been given, not what it can find or
use elsewhere. This is the main problem with Singleton because it
introduces this inside-out dependency that can be hard to break. Pass
In don't Reach Out.

Interfaces are separation points, hiding implementation detail. Code
should not depend on what it knows goes on behind the scenes, it
should stick to the script and get on with the job.

If all of this ends up with big arguments lists, well, so what? It may
indicate a problem with the design (this object needs too much stuff),
or it may make perfect sense, in which case Singleton is Not the
answer!

Design to an Interface
● “interface” keyword
● COM/CORBA – IDL
● C++ Pure Virtual Base Class
● Duck-typing : C++ templates, Ruby, Python
● C# and Java Generics

Designing to an interface is an extension of the idea of separating
implementation from presentation. An interface is a protocol and a
contract, specifying precisely what client code can do, and what it can
expect in return.

Importantly, an interface deliberately hides details of the
implementation from its clients, and in turn, interfaces expect client
code to program only to the interface, and not depend on any details.

The obvious manifestation of interfaces have the “interface” keyword,
such as is found in C# and Java. There are other kinds of interface
however.

What this really boils down to is the idea of polymorphism, where an
interface can “stand in for” an instance of any concrete type which
implements it. Polymorphism is not just a class-related, or even late-
binding thing, however.

An interface is all about Type and Subtype, which is not necessarily
what programmers – or even compilers! - mean by those words. A type
defines what operations are supported for a thing (its behaviour), and
subtyping is the relationship between types according to that
behaviour.

ISubstitutability

The key principle defining an interface is the Liskov Substitutability
Principle – commonly referred to as the “IS-A” relationship.

Common questions relating to this are:

Is an ellipse a circle? Is a circle an ellipse? Is a cat a dog?

Clearly, the answer must be “No” in all three cases. Specifically, code
that expects a circle and receives an ellipse will have some suprises in
store! On the other hand, code that expects a circle may be depending
too much on implementation detail. What is required is an interface
common to both circles and ellipses, which allows code which is
agnostic of the actual “shape” to operate on just the “shape”,
suggesting a “shape” interface which both circle and ellipse conform to
in the LSP “IS-A” sense.

The “shape” is a type, and exposes the set of operations common to all
shapes – so circle and ellipse are related by type according to
behaviour that is common to both, and in common with other shapes.
We begin to see how a thing may have many types, exposing different
sets of behaviour. Cats and dogs are animals, as well as (perhaps)
being pets (or not), but there may be few behavioural aspects in
common between a “pet” type and an “animal” type.

IInheritance

Polymorphism by Dynamic Dispatch
(the conventional model)

Virtual Functions

This is the type of polymorphism commonly meant when the term is
used. It is characterised in most OO languages by the “virtual” keyword
for methods which can be overridden in derived classes.

It is interesting to note that this version of polymorphism – called the
inclusion model – forms the tightest possible coupling between
classes, that of inheritance.

IGenericity

Polymorphism by Generics
(Duck typing)

Containers
Iterators and algorithms
Traits and Policy classes

Generic, or parametric, polymorphism is used when some piece of
code can operate on a generic parameter (“Template”) without knowing
or caring about its actual type. Sometimes referred to as Duck Typing
(presumably because the whole issue of Type is Ducked!), this method
relies on the actual type provided to a generic piece of code being able
to behave in the way required by the using code.

This feature doesn't really require templates or generics as seen in
strongly-typed languages such as C++, Java and C#. Weakly- and Un-
typed languages (e.g. Python) make use of parametric polymorphism
natively; if the “thing” given to a piece of code doesn't do the right thing,
then the code fails. Where strongly typed languages really differ is that
a compiler can usually spot such errors prior to running the code,
although sometimes this requires extra complexity in both generic code
and the concrete types used as generic arguments.

Traits and Policy Classes are widely used in the C++ Standard Library
and provide a way for generic code to find stuff out about the generic
types it has been given, and perhaps behave differently based on that
information.

IOverload

Polymorphism by Overloaded Functions

Member Function Overloading
Global functions and operators

Function overloading allows a single function/procedure/method name
to mean many things depending on the type and/or number of the
arguments provided to it. A simple example might be a a function called
“Add” which accepts 2 integer parameters and sums them together,
which is overloaded by another function called “Add” which accepts two
strings and concatenates them.

This method, in conjunction with Traits and Policy Classes mentioned
in the generic polymorphism, can provide an extremely powerful way of
making code truly polymorphic, at the expense perhaps of some clarity
and directness.

ICoercion

Polymorphism by Conversion

Implicit Casting
Constness

In strongly typed languages, a value can be many things just by the
power of what the compiler will allow it to take part in, for example in C
++, an int may become a double at the drop of a hat – or more
controversially, a bool may become an int at the drop of the same hat!

In common with parametric polymorphism, this model relies on what a
type can do. Novice C++ programmers are often confused and
dismayed that the standard string class has no implicit conversion to int
(or indeed to the native C string as an array of characters). If they use
a string type which does have those conversions, however, the dismay
is usually increased as their strings take part in operations for which
they were never designed – with occasional disastrous consequences.

Substitution Means The Same

Polymorphic Substitutability Applied

So all this talk of substitutability and polymorphism, but what does it all
mean. In the next few slides we'll take a look at why this substitutability
idea is so important for coherent and extensible design.

Testability

Test Independent Parts Independently
Don't get hung up on the small stuff

Interfaces == Substitutability
Substitutability underpins Mockery

Design to an Interface

Unit / Programmer tests are an important aspect to the project lifecycle,
providing a confidence net for changes you make to your code. But
here we're talking about software design, and in particular,
substitutability. These things don't apply so much to the tests
themselves as the code being tested.

If the code under test depends only on the interfaces for the services it
requires – e.g. Database, comms, logging, whatever – then those
services can be faked so that the code still does the job it's supposed
to do (and can be tested doing it). Extending this a bit, having multiple
implementations of the services, one of them fake, perhaps a different
one being a true “Mock” which might instrument the code under test,
checking timings, ordering, threading issues, whatever. The key
principle is that the code under test doesn't know a thing!

By depending and knowing about only the interface and the API it
exposes, the tested code is entirely indifferent to the actual
implementation.

Parallel Development

Define an interface for the component(s)
All teams/developers work to the interface

Continuous Integration
Testing (again)

Extending the idea of testable code a bit, components can be
developed in parallel, as long as the interfaces can (broadly) be well-
defined in advance.

This means that if you are working on some component which depends
on e.g. A database component, you can develop against a FAKE ONE
until the real one is ready. It may even make sense to allow other sub-
teams working on different components access to fake
implementations, or perhaps the development of another component is
scheduled for a later development cycle.

The importance is in the substitutability provided by developing against
only the required interface.

By continuously integrating all components, a solid and broad test
coverage can be achieved; in turn, this ensures that components
individually depend only on interfaces to work.

This concept in turn leads to...

3rd Party Parallel Dev

● Define the interface you need
– You can always “Adapt” it later

● Create a Mock for the unavailable component
– Just like testing!

A component which is being developed by a third party is not so
different from one being developed in another part of your own team,
except you may have less (or perhaps more!) influence on its
timescales.

It becomes ever more important to define the interface required up
front, however. Even so, it is not a complete disaster should the
interface change a bit – if you can persuade your 3rd party supplier to
send you updates frequently, or even better, check-in directly (perhaps
with some controls) to your version control system and take part in
continuous integration – the actual component, when it arrives, can be
adapted to the interface you've used all along anyway.

Once again, it's just like testing!

Adaptability

● New requirements arise
● The app and other components depend only on

interfaces
● Plugging-in a new component just like an existing one is

trivial

Finally, it is a truism that requirements change, and new requirements
arise, and that the software we design is infrequently the same as what
gets delivered.

At the indivudual component API level, changes can only be sensibly
managed by continuously integrating new requirements, and
refactoring code and interfaces together.

At the broad implementation level however, if a decision is made to use
a WiFi network interface instead of a serial line one, or develop an in-
house database instead of using a huge RDBMS, as long as the code
using those components uses only the well-defined interface, and has
no dependence on their realisation, they will not be affected at all by
the new requirement.

Perhaps the new functionality needs to be made available according to
some configuration – and this can be made truly trivial, provided the
client code doesn't need to know.

Flexibility, Generality and Reuse
● The false idols of OO?
● Interfaces provide the means of re-use
● Component architecture provides the means of

flexibility...
–Make it talk to some wire-feed instead of the UI

● and Generality
– Use it in a different application or context

Making a design flexible and general enough to promote reuse is
difficult. Reuse in Object Orientation has traditionally been a matter of
taking a class written by someone else and refine it by using it as a
base, usually with implementation inheritance, or sub-classing.

This led to over-general and over-flexible interfaces in base-class
libraries, to the extent they become unusable, never mind un re-usable.

Generality and flexibility are better realised through simplicity; leaner,
more direct interfaces that appear less general because they are more
specific in fact promote reuse because they bring with them less
baggage – fewer dependencies and easier understanding.

Interfaces are the basic building block for reuse, not general purpose
classes providing default behaviour.

Segregation & Selfishness

Clients should not be forced to depend on
interfaces or components they don't use.

Focus design on what an object wants, not
what it can use.

“Don't Call Us, We'll Call You”

Class interfaces get fat for a variety of reasons, but perhaps the most
common is to make it more flexible, that is, to make it more generally
useful.

This has the effect of making the class less generally useful, however,
because client code then depends on all sorts of things it doesn't need
– especially if the fat-interface class has other transitive dependencies
sprawling off in all directions as a result of the richness of its interface.

Interfaces need to be designed according to what the client code wants
to be able to do. Some services have naturally “fat” interfaces because
they perform a variety of tasks; locality of reference brings everything
into one place. If the interface is split up into several different
interfaces each exposing different functionality, the result is that class
becomes more generally useful.

On Singleton

● Adapt the interface
–Make an interface to publish
– The implementation instantiates the Singleton
– The rest of the app uses the interface

Removal of Singleton objects shouldn't be the goal – solving the
problem that suggested use of a Singleton in the first place is where
we should be looking. Sometimes it is just too much effort to remove
Singleton instances in code, so there are other ways to remediate the
problems associated with Singleton.

I'm sure you've guessed it by now – because it is the same solution
used throughout this talk: introduce an abstract concept to represent
the detail of implementation.

Dependency Injection

● Spring and its fellows
– Sometimes a good idea
–More often than not, sledgehammer for a walnut

● Service Oriented Architecture
● PfA is the root-solution

There are a number of frameworks and libraries available which
promise the idea of true decoupling, whereby the interfaces for various
services are defined, and concrete instances are instantiated
according to a configuration file.

This all sounds fine and dandy – and it works very well – but it's often a
step too far. Small self-contained applications have no real need of the
extreme separation provided by the likes of Spring and Spring.net.

Similarly, the promises of the Service Oriented Architecture go yet
another step, and define ways for applications written in different
languages, operating on disparate platforms to communicate together.
Each publishes services (that word again!) which can be used in other
applications. SOA specifies contracts for data and operations that must
be met by implementors so that clients can depend on them.

But ultimately the ideas of separation of concerns, contracts
(interfaces) and service provision lie with the individual programmer, at
the application level. SOA, or even DI tools like Spring, are not always
necessary, and themselves can be a hindrance to clarity and simplicity,
and so may lead to bad instead of good design. It can be tempting to
suppose that these tools – shiny new buzzwords and all – are the silver
bullet which has so far evaded us....

Hexagonal Architecture

Application

GIS

User

Comms

Interop

Logging

Database

Email

Messaging

In a paper originally entitled “The Hexagonal Architecture”, Alisdair
Cockburn describes an architectural style which promotes the idea that
an Application itself is a service, operating on other services (later
called Adapters) to provide a coherent whole. The key to the whole
idea lies in a single sentence: “The application has a semantically
sound interaction with the adapters on all sides of it, without
actually knowing the nature of the things on the other side of the
adapters.”

The adapters can be easily swapped out for mock objects or alternative
implementations so that the application can be driven by batch process
as easily as by a user, or a mocked network as easily as a real one.

The hexagone was chosen deliberately to emphasise the symmetry
between Inside and Outside, rather than above and below as in the
layer cake model. It also highlights the idea that there are a number of
Ports (over which Adapters communicate with the Inside App).

And, by complete coincidence, a snowflake is a Hexagon. So there's
the secret to the title of this talk :-)

Ports and Adapters

● A Port is an API
– Exposed by the app
– 1 or more interfaces

● An adapter is a
component
– Plugs into a port

exposed by the
application.

Application

GIS

User

Comms

Interop

Logging

Database

Email

Messaging

The purpose of the terms identifies how the communication happens.
An application publishes/exposes Ports, which Adapters plug-in to. A
Port may be an interface which is implemented by an Adapter, it may
be an API which is called by an adapter.

This brings into play the idea of Active and Passive adapters. An active
Adapter may call into the application, a passive one is used by the
application.

So a database would normally be a passive adapter, implementing
some interface. A UI would necessarily be an active Adapter, calling an
API exposed by the application, which might be an interface given to
the UI component.

Adapters

● Are substitutable for adapters fitting the same ports
– A mock database instead of a real one
– A batch script instead of a UI

● May well be plug'n'play
– But that depends on many things – most

importantly, is it sensible?

Importantly, a port defines a contract, which in turn supports the idea
that adapters which fit the same port ar substitutable for each other.
Importantly, the application should know nothing of such a substitution,
for example, using a MockObject for the database, or a batch script
instead of a UI.

Adapters may even be plug and play – substitutable at runtime via
some external means, perhaps a configuration file. Dependency
Injection frameworks often provide this facility, but it's not always
required, or even sensible to have that extra complexity “built-in” from
the ground up.

A suitably decoupled architecture such as the Ports and Adapters idea
here, supports the idea of runtime substitution without actually
enforcing it.

A Step Further

What if each adapter
exposes its own ports?

Any component can
communicate with any

other – the components
become the API

UI

ProtocolsSecurity
Policy

Logging

DB

Processing

Comms

Messaging

GIS

Extending the idea of the “application” just a bit, what if each of the
adapters exposed its own ports, so that other adapters could use it?
This would be kind of like SOA, but much less formally. An application
becomes a network of services, and building an application requires
wiring those component services together...

Well, yes and no. This is indeed what SOA promises, and it fails to
deliver for the same reasons as the OO hype of off-the-shelf
components did – design happens on your side of the keyboard.
Programming is still a skilled occupation.

To a point, however, the design of an application comprising services in
other components is attractive. The components themselves become
the applications API – its ports.

Back to Circular Dependencies?

Interfaces form the separation points.
Circular dependencies mean the design is

wrong (still)!

Sometimes it makes sense for components to be mutually dependent,
at the conceptual level. Breaking that circular dependency is still a
matter of using interfaces such that the interfaces themselves are not
mutually dependent.

It's probably possible to imagine a scenario where even interfaces
become mutually dependent, and as before the answer to that problem
is to introduce another layer of indirection.

Interfaces are the separtion points – the variation points – in an
application, a way to provide a parameterised approach to the
architecture, vis. Mock objects and alternative implementations.

It's important to re-emphasise the idea of parameterising from outside
(rather than above) and attempt to ensure that where mutual
dependencies exist, they are confined to the realm of implementation,
not the interface.

Snowflake

UI

Protocols

Security
Policy

Logging

DB

Processing

Comms

Messaging

GIS

Interop

● Solid diamonds are
implementations

● Hexagons inside are
interfaces

● Diamonds depend only
on hexagons.

● Hexagons depend only
on other hexagons

Where Alisdair Cockburn's Hexagonal Architecture had distinct left and
rights sides, representing Input and Output (or Active and Passive), this
model has no such distinction. Its purpose is to relate the deployment
distinction between interface and implementation, and how the
communication channels between interfaces (hexagons) can be direct,
the communication between implementations is indirect, via interfaces.

It is important to note here that NO implementation diamon is a
dependency of anything else – they should be entirely stand-alone. All
dependencies are on Hexagon Interfaces – whether that dependency
is implementation-to-interface or interface-to-interface.

It therefore conforms to the Dependency Inversion Principle,

“High level modules should not depend upon low level modules.
Both should depend upon abstractions.

Abstractions should not depend upon details. Details should
depend upon abstractions.”

The Return of the App

Somewhere there needs to be a part of the
program which creates the concrete

instances of the adapters and manage their
lifetimes with respect to each other.

We've already explored the idea that sometimes it makes complete
sense for services to be mutually inter-dependent; an example might
be a database component that writes to an external logging
component, which in turn has a database connection as one of its
writers.

It becomes up to the application to manage those dependencies, to
instantiate the implementations, and where necessary (it usually is, one
way or another) manage their lifetimes.

There needs to be some aspect of an application that does this – even
with a DI framework, there needs to be “An Application” that marshalls
the communication between components to form a system.

A truly decoupled architecture is not an application or system, just a
pile of independent parts.

Substitutability Redux

App can choose which implementations to
instantiate – tests, real, alternate

Part of the importance of substitutable components is that the
application can now choose which implementations to instantiate. A
test application intended to drive components or other code for testing
will do things differently from a production application, so there may
end up being seceral applications of your software.

But we still have the open question – what is the application?

We are back to the idea of the application being a component itself, but
maybe one which has only outward dependencies – nothing depends
upon it.

Fortunately, in many languages, the facility for doing this already exists;
it is in fact mandated for many of them...

The Main Attraction

“Main” is the application.
Manages object instantiation and lifetime.

Maybe another level of indirection (e.g. Spring)

If component implementations are instantiated in main() or Main() or
whatever it is called, there is an obvious way to manage both the
number, type and lifetime of objects created.

If a component requires to be a single instance, instead of wrapping it
up as a Singleton, create just one instance of it. The Main entry point to
the program defines and implements the policy of the components it
creates and manages, including when they get destroyed, and in what
order.

It is the one point in the system which knows about concrete
implementations, what their interdependencies are, and how to create
and destroy them.

There may be other forces at play, too, such as lengthy argument lists
to some components, or the requirement to be able to vary
implementations whilst the program is running.

Each is manageable at this level of the application – it is the dirtiest,
least encapsulated, and maybe the most complex of all code – but it is
all in one place.

Project Organisation

Each component consists of interface and impl.
Separate project for each (static lib/assembly)

In order to ensure that a component doesn't require its clients to add
dependencies they don't use, it can be split into separate modules
(perhaps static or dynamic libraries, .Net assemblies, etc.) one for just
the interface, and one or more for implementations.

In the example shown, two components are mutually dependent at the
implementation level. If the separation of modules had not been done,
any client of either component would depend upon both, even if that
client required only one of them. Note there is no dependency between
the two interface modules, so client code which requires the data store
component does not require a reference to the communications
project, provided it depends only on the interface.

The part of the application which creates the implementations will bring
all the needed modules into play, instantiate objects and connections in
the right order to satisfy their dependencies, and manage their lifetimes
accordingly.

In C++

int main()
{
 auto_ptr< logging > log (new file_log);
 auto_ptr< comms > c (new net_comms);
 auto_ptr< messaging > msg (

new buffered_messaging(log.get()));
 msg->send(c.get(), message("Starting"));

 return 0;
}

For example, a simple C++ application may look a little bit like this.

Note that the msg object depends on the log object already created,
and the comms object in the call to send().

C++ guarantees that objects are destroyed in the reverse order to
which they were created, so this code takes advantage of that fact.
Using auto_ptr to manage the lifetime ensures that correct
destruction takes place whatever happens (pretty much!). It's used
here as an example – there are other and better ways of managing
shared objects' lifetimes.

In C#
int Main()
{

using(Logging log = new FileLog())
{ using(Comms comms = new NetComms())

{ using(Messaging msg =
new BufferedMessaging(log))

{
msg.Send(comms, “Starting”));

}
}

}
return 0;

}

Here is the same example, but in C#.

The real key here is that dependencies are passed in to objects
requiring them. Keeping with the spirit of Alisdair Cockburn's Ports and
Adapters/Hexagonal Architecture, I refer to this as Paramaterise From
Without.

Paramaterise From Without

Define abstractions
Program to interfaces
Interface Segregation

Selfish Objects

In conclusion then, architecture and design are practically
indistinguishable from each other at a certain level. Without having
thought a bit about design at a fairly low level, we cannot consider the
architecture to be stable, and conversely, architecture itself influences
design because it changes the way we think about it.

Abstractions are – by their nature – slippery things, but it's important to
identify the main actors in a system because that can influence the
architecture.

Expose those abstractions through interfaces, and ensure that client
code can and does depend on the interface alone. The Interface
Segregation Principle proposes more interfaces with thinner APIs –
even if some implementations end up implementing several of them
(service objects).

Finally, objects should be selfish, and use only what they are given. If
they can't do the job with what they are given, then either they're in the
wrong job, or the job hasn't been designed properly – fix the design.

Steve LoveSteve Love
steve@steve@arventecharventech.com.com

