Stop-the-Line Quality

Lessons from Lean

The Toyoda’s

Sakichi Toyoda (1867-1930)

v" Extraordinary inventor
of automated looms

sakichi Toyod.a v" Crucial Idea: Stop-the-Line

(1867-1930)
Kiichiro Toyoda (1894-1952)

v" Bet the family fortune on
automotive manufacturing

v Crucial Idea: Just-in-Time

Kiichiro Toyoda

(1894-1952) Eiji Toyoda (1913-Present)

g@ v 50 years of Toyota leadership
ey

v Championed the development of
The Toyota Production System

Eiji Toyoda
(1913-Present)

Tatichi Ohno
The Toyota Production System, 1988 (1978)
v Eliminate Waste L

% Just-in-Time Flow
v Expose Problems

* Stop-the-Line Culture

SHIGEO
SHINGO

April 07 Copyright©2007 Poppendieck.LLC

1920’°s:
v" Idea: Unattended looms

v Invention: Looms that

stopped the moment a
thread broke.

April 07 Copyright©2006 Poppendieck.LLC

Engaged People

“Only after American carmakers had exhausted
every other explanation for Toyota’s success —

an undervalued yen, a docile workforce,
Japanese culture, superior automation —

were they finally able to admit that Toyota’s real
advantage was its ability to harness the intellect
of ‘ordinary’ employees.”

“Management Innovation” by Gary Hamel,
Harvard Business Review, February, 2006

Put on Customer Glasses M U D A

anvthing that

Features and Functions Used in a Typical System

e

5%

Rarely or Never
Used: 64%

April 07 Copyright © 2007 Poppendieck.lic

wogle - Windows Internet Explorer L=-|E

fﬁ&jr - | http:/ frnsns, google. comfwebhp?sourceid=navclient&ie=UTF-5 M 'E| |E| |Gu:u:ugle | |£-
ogle ||G|" MGD o5 O @ By~ U¢ bookmarksw T3%REk . Bheblocked GF Check = P (L) settirn
Eﬁ’ IGDDgIe l_l ﬁ = @ i @Eage - @Tgﬂls .

Personalized Home | Sign in

Google

Web Images Video MNews [Maps Desktop more s

| | Advanced Search
| | Preferences

[Google Search][I'm Feeling Lucky] Languane Took

Advertising Programs - Business Solutions - About Google

Make Google Your Homepage!

22008 Google

Keep it Simple

€l Internet L 100%

Reduce Risk

The Biggest Risk 1s Work-1n-Process
v'The Big Bang is Obsolete <M/

Sources of Risk N
v Un-coded specifications
v Un-tested code

v Un-integrated code

v"Code that has not been used in production
The Best Risk Mitigation 1s Low Work-in-Process

v Test early, integrate often, fail fast.

Lesson 2:
Don’t Tolerate Defects

There are Two Kinds of Inspection* 9
1. Inspection to Find Defects - WASTE
2. Inspection to Prevent Defects — Essential

* Shigeo Shingo
The Role of QA

The job of QA 1s not to swat misquotes,
The job of QA 1s to put up screens.

A quality process builds quality into the code
v If you routinely find defects during verification

— your process 1s defective.

- g
TS
- —

Where do defects come from?

90% of all defects caused by the system*

1. They are not caused by individuals.
2. System problems are management problems.
* Dr. W. Edwards Deming

Change The System

Mistake-Proof Every Step
v Detect defects the

&
®. @
moment they occur ’f
Don’t track defects on a list g
v Find them and fix them
Test FIRST

Case Study

Mobile Spectrometer to Analyze Grain

Techniques:

v" Trouble log with different behaviors depending on
development or field platform and severity of error.

v" Dual-targeting: Bracket HW-dependent code and
run only with target HW, mock-out otherwise.

v Isolate HW driver code, use scripts to test it with HW
* Became the HW acceptance tests

v Isolate and test domain-level code (eg communications)
v" Special tests for unique domains (eg math algorithms)

Result:

v In3 years, only 51 defects (18 critical, 23 moderate, Taken from: Taming the Embedded

10 cosmetic), with a maximum of 2 open at once! Tiger - Agile Test Techniques for

.. . . Embedded Software, Nancy.Van

v" Productivity 3X similar embedded software teams. Schooenderwoert & Ron Morsicato,
.) ADC 2004 & Embec!ded Aqlle Project
v~ HW engineers trusted SW and used it to debug HW. | by the Numbers with Nubies, Nancy

Van Schooenderwoert, Agile 2006

v'Every few minutes

¥ Build & run unit tests
x STOP 1if the tests don’t pass

v'Every day

% Run acceptance tests
x STOP if the tests don’t pass

Every Release:
Deployed and Running in Production

Every lteration:
Deployment-Ready Code

Weekly Integration Tests

Daily Acceptance Tests

10 minute
build test

April 07 Copyright©2007 Poppendieck.LLC

Manual:
As Early as
Practical

Automated:
Every Day

Tool-Based:
As Early as
Possible

Automated:
Every Build

A Test Harness to
Simulate Integration Testing

v Create a harness to simulate the
remote system at each integration
point in the system under test.

v Design a devious harness with
nasty, malicious behavior that will
beat up the system.

v Try to provoke all possible failure
modes in any remote system at all
seven OSI layers.

v" A single harness can work for many
networked applications, simulating
similar bad behavior.

v See “Release It! Design and Deploy

Production-Ready Software” Michael
Nygard, Pragmatic Press, 2007

A harness for a Web Services call

X

X X X X X

x

Refuse all connections
Refuse all credentials
Listen but time out

Connect very slowly
Send nothing but RESET’s

Accept connection but don’

t send data

(or don’t acknowledge data)
Accept a request and send response

headers but no body

Report data received but
never empty the buffer

Send 1 byte of data every 30 sec.
Send megabytes of data when kilobytes

are expected
Send unexpected formats
Etc.

al'Qad

4

Anything that makes code difficult to change
(The usual excuse for batches & queues)

v'"Complexity

The cost of complexity is exponential.

v'Regression Deficit

April 07 Copyright©2007 Poppendieck.LLC

Case Study:
Rally Software Development

“We found ourselves doing waterfall in
time-boxed increments. During the first
year we had a lot of technical debt.”

Testing:
v" JUnit for unit tests
v HTTPUnit for testing the GUI
% Not capable of testing page flows
% Most GUI testing manual
% All acceptance testing manual

v 6 weeks to develop, 2 weeks to
test, and not all testing was done.

Develop Code for Iteration
A

(

D TS IS D B B

v" Gradually moved page flow
platform to Spring and AJAX
% Tested Spring with FIT & Fitnesse

% Tested AJAX by using JIFFIE to
bind Java to IE. Wrote tests in Java
to test AJAX through the browser.

v Hardening was reduced to 1 week.

Develop Code for Iteration
AN

~
Hardening

“The test load was a killer,

Y)Yy)
.

Hardening

v Responsibilities changed:
% Testers: FIT tables & JIFFIE tests

% Developers: FIT fixtures, JUnit
tests, and GUI test harness

v Now release monthly, pre-hardened!

Develop, Test & Release

and. it just kept going up.”

Ryan Martens, CTO b A \

j)))

Hackathon

Development
Team

Current
Needs

Current
Design
Intent

System
Under
Development

Hardware
P & Code

Current
System
Capability

Not Consistent
Modify Hypothesis

Consistent
Publish Results

Iteration Iteration
Planning ' Execution

April 07 Copyright©2007 Poppendieck.LLC

Request Age O Minor
Request Arrival By Priority o Normal

@ Important

100%
o0% - g Umgent

80% . . B Emergency

70%
60%
50%
40%
30%
20%
10%
0%
>16weeks 8-16 weeks 6-8weeks 4-6weeks 2-4weeks <2weeks

Number of Requests
Cumulative

Refactoring: Relentless
Improvement of the Code Base

Just-in-time NOT Just-in-Case
v Start with what you know is needed now
v" Add features only when you know you need them
v" Refactor: Simplify the code based on what you know now

Maintain a Simple, Clean Design

v No features ahead of their time /<P

v No features after their time 7
v No Repetition 4
Satety First!

v You can’t refactor without test harnesses.
Time to Refactor

Thank You!

