nordi ia

Copyright ©2006, 2007 Nordija A/S. All rights reserved.

3 hours. Target: 60 slides, 3 minutes/slide

Agile development usually talks in general about work queues and waves its
hands about architectures all while singing the praise of user stories. How is
a C++ programmer to reduce these to practice? This tutorial describes how
to combine three techniques to achieve business objectives that go beyond
the Agile tradition. The techniques are well known -- Use Cases, Domain
Analysis, and CRC cards -- but they are combined in interesting and
powerful ways to create a flexible, lightweight design method. The method
helps projects create long-term business assets through lightweight front-
loading of design. It reconciles user requirements with the architecture by
separating role design from class design.The technique has been proven in
many long-standing development projects ranging in size from a handful of
people to teams comprising multiple departments. While the tutorial targets a
C++ audience, the approach generalizes to Java development as well.

Introduction to an Agile Approach

Use Case Review

Agile Architecture through Domain Analysis
Applying OO Fundamentals
Responsibility-Driven Design

Tying it All Together

Implementing the Design

Conclusion

€9 = CPSCES @ [V (=

A > 4

This outline presents a framework for a course on object-oriented analysis
and design. This is intended to be a practical seminar that prepares people
to “hit the ground running” after they are done. The course materials build on
a foundation of concepts that support a level of understanding that will
discourage students from applying the course ideas blindly.

The course is not tied to any specific methodology or CASE tool. There are
many “tools” offered in this course for problem identification and definition
(the Satir change model), for capturing user wants and needs (use cases),
and for reconciling structural and functional needs (CRC cards). The
enterprise may want to use its own tools, such as Rose, to present source
code in graphical format for ongoing solution domain analysis. However,
those tools are central neither to the design principles nor to the design
processes at the core of effective analysis and object-oriented design, and
they are given their proper place subordinate to the core course concepts.

The day boundaries are approximate; this is a custom packaging that has
not previously been time trialed. The schedule and material are flexible. It is
our goal to tune this as best as we can to your needs, so please give us your
feedback on parts you see as weak or missing.

Prerequisites:

The student should be familiar with basic Java and C++ programming
constructs including member functions, inheritance, and information hiding.
The student should also be familiar with a typical software development life

Course Scope

. Agile: A set of values
. Methods that precipitate from Agile
. XP
SCRUM
Crystal Clear

. These are largely project management methods
. Those are fine — but what are the tools that support design?
Design and people are the keys to success
Methods are just there to support design
You also need design tools
. This is a course about Agile design
Agile analysis / design tools such as CRC cards and Use Cases

Adaptive/Agile implementation techniques including software
investment and roles

. The focus here is on developers
Tools for use within a Scrum sprint, or to interface to the project
management tools of Scrum and XP

A : 4

People commonly interpret “Agile development” to mean something other
than what we find in the Agile manifesto: that it is chaotic development, or
that it is just development without documentation, or that it is XP. In fact
Agile development is a set of values. Most articulations of Agile development
focus on project management. Here, we focus on the developer: the tools
they use to interface with project management constructs, or to support the
work within an Episode or Sprint. Each of these tools derives from the values
of Agile development. This course will highlight Agile values and practices
with an Agile clown overlay as we go through the slides.

1. Introduction to an Agile approach

. Processes and tools...

... replaced by teams that form around and nurture areas of
specialization and deliverable features

e Comprehensive documentation...
... replace by lightweight domain models (which is better

than no documentation), a testable architecture, and an
“executable specification” in CRC cards

e Contractual agreements...
... replaced by direct interaction with domain experts, end
users who bring Use Cases, and other stakeholders
¢ A planned process...
... replaced by an environment that responds to changes in
end-user needs with feedback that can go all the way into

the architecture, and which is explicitly designed to support
a broad spectrum of clients

L SRR _

5|

Agile supports a system thinking approach. It replaces processes and tools
by teams that form around and nurture areas of specialization and
deliverable features. We want to build on that specialization. We replace
documentation by lightweight document models, a testable domain model,
and an “executable specification” in CRC cards, that moves testing from the
technical domain to the social domain. We replace contracts with dialogue—
both with domain experts during the creation of an Agile architecture, and
through Use Cases that map out customer needs and wants. And instead of
a planned process we prefer an environment that provides powerful and fast
paths for feedback to propagate where it needs to go.

The Process of OOA/D

[Whatthe sysem doss: Revenue =

.
‘ 5‘

Here is a development model based on the need to increase revenues and
decrease costs. The functional customer view, using Use Case models, is
about capturing end user and customer wants and needs. If we do that and if
we can satisfy those needs, we can increase revenues.

The structural business view is about building a robust architecture that is
resilient in light of change. It is about making investments in the structure of
our system that will reduce cost and have payoff in the long term.

Different structures arise from each of these. One architecture helps support
profitability. Another reduces cost. Historically, the object paradigm has
waved its hands and ensured us that objects achieve both these ends. That
is just naive. And it’s a bit frightening: How do we achieve such a level of
integration? Experience has shown that CRC cards provide a good
foundation for solving this problem. But we need a little bit more to express
the cross-cutting of these two business views in the vulgar code of the
implementation. That’'s where roles come in.

r
A Use Case

Name: Get Paid for my Car Accident Goal: Get paid for car accident

Scope: Business

Level: User

Preconditions: Policyholder has filed claim

Success Condition: Insurance company pays claimant

Failure Condition: Insurance company does not pay claimant

Trigger: Claimant calls for the fifth time about a claim

Notes

Variations: Claimant may be a person or another insurance company or agency; payment may be by
. 1

or interbank transfer

Scenarios

1. Claimant submits claim with substantiating data

2 Insurance company verifies claimant owns a valid policy

3. Insurance company assigns agent to handle the case

4. Agent verifies all details are within policy guidelines

From http://members.aol.com/acockburn/papers/usecases.htm

5. Insurance company pays claimant

(

A A

You know Use Cases from your earlier training. We will offer a short review
of Use Cases in this seminar. Here is a sample use case following a form
offered by Alistair Cockburn. Use Cases are informal analysis tools, useful
for making models of what is. What we model is the user conceptual model
of the workflow. We can make such a model with respect to a system that a
user is already using and which we will augment or replace with new
software, or we can make a general model of the user environment.

A CRC Card
Window
Display Characters Keyboard
Scroll Contents View
Erase Contents Mouse
Draw Lines
T] 4

(W

Here is a CRC card. You probably know CRC cards informally from your
past training. Here, we will look at the CRC card technique in depth. First,
you will learn refined facilitation techniques for CRC card sessions. Second,
you will learn how to use them to model roles. Role modeling fits strongly in
the original Use Case tradition. Roles will be crucial to our design process,
and to the problem of fitting together business needs with customer needs.

2.

e A collection of possible scenarios between the syst em under
discussion and external actors, characterized by th e goal the
primary actor has toward the system's declared
responsibilities, showing how the primary actor's g oal might
be delivered or might fail.

e A contract for the behavior of the system under discussion
e Why use cases?

They provide a framework for making difficult decisions
early

Prune the decision tree early
Making difficult decisions late:

Reduces your options, so your decisions are easier to
make

Greatly reduces the quality of the decisions.

A - 4

Here, we review Use Cases. Here are two definitions of Use Case. Unlike
user stories, Use Cases are a contract. Use Cases have structure that goes
deeper into system concerns than user stories do. Alistair Cockburn says,

“The authors of Extreme Programming (XP) stayed with the idea of
informal scenarios not having any formal structure at all. Kent Beck
created the term user story to describe these sorts of requirements. A
user story consists of just a phrase or a few sentences written on an
index card, announcing something the user wants to do. In XP, the
user story is not used as a requirements specification, but as a marker
for a future conversation. Therefore, the card only needs to record
enough information so the programmers and customer know what to
discuss later.” --
http://alistair.cockburn.us/index.php/Use_cases,_ten_years_later

I A Simple Use Case h

Name: Get Paid for my Car Accident |Goa|: Get paid for car accident

Scope: Business

Level: User

Preconditions: Policyholder has filed claim

Success Condition: Insurance company pays claimant

Failure Condition: Insurance company does not pay claimant

Trigger: Claimant calls for the fifth time about a claim

Notes

Variations: Claimant may be a person or another insurance company or agency; payment may be by
. 1

or interbank transfer

Scenarios

1. Claimant submits claim with substantiating data

2 Insurance company verifies claimant owns a valid policy

3. Insurance company assigns agent to handle the case

4. Agent verifies all details are within policy guidelines

From http://members.aol.com/acockburn/papers/usecases.htm

5. Insurance company pays claimant

(

A 4

This is my preferred format for Use Cases. It can fit on a large index card,
and balances richness of description with simplicity.

You may prefer to keep these on-line with a tool such as Plan B from
Nordija. However, it is good to print out individual cards during meetings;
there is something powerful in the meeting dynamics that arises from the
tactile nature of a card.

Use Cases in Development

nordi ia

Why do we use Use Cases? Use-cases are responsibility-based; we can
glean responsibilities from them to drive responsibility-driven design.
Responsibility-driven design leads to maintainable designs and is long
recognized by Wirfs-Brock, Beck and others as leading to good object-
oriented development. Having Use Cases, you can simulate the design in
your head even before writing code, ensuring that all the necessary
interfaces are present. We will discuss CRC cards as a tool for
responsibility-driven design tomorrow.

10

3. Agile Architecture through Domain Analysis

. Creating Architectural Foundations

. Building software families instead of one-off syste ms

. An investment for the future

. Usually not incremental or Agile, but can be made | ightweight
. Lightweight — at most one sprint of work (about a we ek)

L SIEE1O N 4

Now we’ve covered the “what the system does” part of design, let’s turn our
attention to “what the system is.” This is about creating an architectural
foundation that is a long-term investment that underlies and enables user
feature delivery.

The main value of domain analysis is in supporting multiple customers,
either at once (a bad idea for starting) or over time (usually inevitable). We
aim to build families of products: to build a product line instead of one
turnkey product.

You usually do implicit domain analysis at the beginning of every project,
either by talking with clients or domain experts, or relying on your own
knowledge. We add a bit of disciplined thinking to that process. You can
make it as extensive or as efficient as you like. But we strongly advise
generating a bit of lightweight documentation of your domain structure at the
beginning. The main value of this documentation is to defocus you from the
scenario at hand and to focus on the system structure: systems thinking.
The secondary benefit is to create mementos as a record of architectural
decisions you may choose to later revisit.

11

A key concept: Scope

e Relates to business identity
e You should analyze to the boundary of your business

* Youshould articulate analysis to the boundary of your
business

e You should design and implement to the boundary of
paying customers (or speculative development)

e The bad news:

It's difficult to get three customers together in a room to
discuss shared ideas

e The good news:

Experienced architects and developers often know the
scope

e Scope is ultimately a business decision
@ Use Case extensions delineate the project scope

SRR _

A Ll

You can’t be all things to all people, so you need to scope your analysis.
This is not a technical question, but a business question. You can’t be every
business in the world: analyze to the boundaries of your business.

Your architecture will capture the structure of your domain analysis. As you
flesh out the system, the class interfaces will start to have filled-out member
functions. Some of these you can do at the beginning from your domain
knowledge alone, pulled by some foreknowledge (provided by the Use
Cases) that that code will be needed. But you can declare an interface
without implementing it. You should design and implement only to the
boundary of the Use Cases—NOT that of the domain.

How much architecture?

nordi iq

13

A

Emerging Success of DA Techniques

SUNGARD CSA BLOG

Commonality and Variation, key CSA principles
March 23, 2006, 9:43 am

Posted by Darren in Software
Rating: 0/5 Votes : 0

The principles of commonality and variation are well defined in a thesis paper by
James Coplien "Multi-Paradigm Design”, (can be downloaded from:
http://prog.vub.ac.be/Publications/2000/vub-prog-phd-00-01.pdf also described in his
book: "Multi-Paradigm Design for C++", published by Addison-Wesley in October of
1998 [Coplien1999], the thesis paper is essentially the book). These principles are
fundamental to SunGard's success with the CSA, and are relevant to software
architecture as well as product management going forward,

As I've discussed in earlier blogs, the CSA uses abstraction heavily in order to make
sense of the various elements and concepts found in our myriad of architectures at
SunGard. Coplien's paper addresses abstraction technigues in terms of commonality
and variation since complexity and problem definition are key issues in software work
today. For example, grouping is a useful technique in abstracting similar concepts.
Procedures or methods form out of grouping steps of an algorithm by their
relationships, and responsibilities of an encapsulated collection of related data are
grouped to form classes.

Coplien's design approach uses analyses of both the application and solution domains
in parallel. It provides techniques in finding solution demain constructs that most
naturally express the structure of the application domain. It seeks a match between
commonalities and variabilities of the solution domain with those of the application

Sap 2008
SMTWTFS
Tz
3456789
1011121314 1516
171819202122 23
247526 27 28 79 30
<< >>

Recent posts
Collaborative SOA
Lessons Learned
Software-as-a-Service vs.
ASP

1s Eclipse finally getting
cozy with Sun?

Iona's open source ESB
All Buses Are Not Created
Equal

Where'd the
Hub-and-Spoke model
go?

Commonality and
Variation, key CSA
principles

CSA integration and
preserving legacy
Reuse, not so illusive
anymore, thanks to
process

S0A ROIs

~

<D, |

Domain analysis techniques are enjoying resurgent success (why? See my
my musings at
http://www.artima.com/weblogs/viewpost.jsp?thread=167119.) Here is
an example that uses the techniques that underlie this course.

14

All Design starts by Divide and Conquer

. The units of division are domains
Not objects — that prejudices the implementation
Not modules — that is a design concern
. Partitioning follows:
Business intuition and history
The need for software families within the product
. The partitioning can never be perfect—more aboutth at later
. Involve all stakeholders from marketing to develope rs!

A Ld

One goal of analysis and design is to manage complexity. A good analysis
attacks complexity by organizing information without losing information. The
first step in organizing information is almost always divide-and-conquer. We
too often divide the system using prejudiced implementation techniques:
e.g., we divide the system into functions or objects or modules. Instead, we
should let our intuition speak to us about the overall domain structure of the
system.

Domains often (but not always) arise from families or product lines. For
example, if we are building a text editor, we might build families of disk file
types or of editing language types. Each one of these is a domain.

15

Application Domain Analysis

e.g., a family of Text Buffers

e.g., a family of Text Files

. Do it for each domain
. Domain Analysis versus Analysis
Analysis: understanding a system
Domain analysis: Understanding a topical area
. Characterize the families of each domain using comm onality analysis
Capture commonalities
Parameterize Variations

L S0E19} ®|

Once we divide our system, we look at each domain to discover its “shape.”
We carefully observe the family members: why did we group them? We will
have grouped some of them by their commonality of behavior and structure,
as we might do with Text Buffers. We might group some of them because
they share the same algorithm, or because they share the same structure.

We also want to regularize the way that family members vary. For example,
we can look at a family of sorting procedures that all use the same algorithm
but which vary according to the type of the elements being sorted. The type
of the sorted element is called a parameter of variation for the domain.

16

Example: Text Buffer for a Text Editor

e All text buffers share common behavior:
Yield line at line N
Initialize from some file or stream
Write to some file or stream

e All text buffers share common structure:
The top line in the buffer
The number of lines in the buffer
“Dirty” bit

e Text buffers can vary in the following way:
Character set (wchar _t , ASCII, EBCDIC)
Memory Management Algorithm

% g9 8 al

We can look at Text Buffers as an example domain. We might build many
different text editors for different customers, and their requirements on Text
Buffers will vary; yet all Text Buffers have something in common (which is
why we grouped them as Text Buffers). All Text Buffers can be asked to
yield a given source line, or to initialize themselves from some file, or to write
themselves out to some file. They may all share common structural elements
such as the line number of the top line currently in the buffer, or a flag
indicating whether the buffer has been modified.

Text buffers vary in regular ways. Each Text Buffer supports a specific
character set and a particular memory management algorithm. These two
features are said to be parameters of variation.

17

Application Domain Analysis

Commonality: structure and behavior

Variability: Algorithm

Commonality: structure and algorithm

Variability: Type

Commonality: structure and behavior

Variability: Algorithm

. Look for kinds of commonality:
. Structure
s e e Sy

Name / meaning e
Value / state Domain Dictionary

Algorithm
... very few of these kinds of things
. These go to the foundations of human perception
. Do the same for variation

L SR

18_‘

Once we have delineated the commonalities and variations, we classify them
according to a taxonomy of design. This taxonomy is fairly universal across
Western thinkers and forms the foundation of the features of all practical
programming languages. There is a remarkably small number of such
considerations: structure, name/meaning, value/state, algorithm, and type.
These go to the foundations of Western cognition. We call them commonality
categories.

For each domain, we characterize both the commonalities and parameters of
variation according to this model.

18

Products of Domain Analysis

. Domain Documentation
Not UML

Use Cases aren’t for domain knowledge, but for current
customer desideratee

Objects alone prejudice understanding important
domain configurations of commonality and variation

Instead, document:
Software families , and for each family:
A basic domain vocabulary : very simple
The commonalities across family members

Parameters of variation that distinguish family
members

« A baseline architecture

Real code that can compile and demonstrate trivial
functionality

Partially filled out
Do “Use Case YAGNI”

SS9 _

A Ll

What do you have at the end of a domain analysis? Remember, this is “Agile
architecture,” so we don’t want a ton of documents. But we do want domain
documentation: it captures one of the most important assets of an enterprise,
and in fact can be a major component of a knowledge management
program.

We don’t want to use objects to do this: they prejudice the solution. We
instead look for configurations of commonality and variation, for software
families. We document these using commonality and variation.

As a result we will have a lightweight set of documents that describe each of
our software families (maybe a half-dozen or so, one page each). We can
take these ideas into C++ or Java class interface declarations that actually
can compile against each other. If we stumble onto some generic knowledge
about implementation along the way, we can deliver that as part of the
architecture as well. That might include COTS software—the way having
been pointed by domain analysis. Do just enough Use Cases so that the
system integrates and initializes in a sound way, and can demonstrate trivial
functionality.

This framework will have many pure virtual (deferred) functions that may not
yet be overridden in derived classes. Avoid the temptation to implement
them on the basis of some guess of how they will be involved in a future Use
Case. Let the real Use Cases drive code generation.

19

An Example: Text Editing Buffers

« Commonality: Behavior, some data structure

All text buffers can be asked to yield a given line, to fill
themselves from an input type, to write themselves to an
output type

All text buffers know the line number of the top line that
they have contain

All text buffers have a “dirty bit”
. All text buffers contain a line count

e Variabilities:
Character Set (Type)
Working Set Management (Gross Algorithm)

e Solution:
Templates (Common data structure, different type)
Inheritance with Virtual Functions (Common behavior,

different functions)
A —

Let’s return to our running example, text editing buffers. What did we find out
about them during commonality analysis? that all family members share
behaviors and some data structure. Against that background of
commonality, individual text buffers exhibit regular variabilities: the character
set they support, the working management algorithm they support, etc. We
can select commonality categories for these parameters of variation:
character sets are a type, and working set management is gross algorithm.

We look up the commonality/variability pairs (structure and behavior/type;
structure and behavior/gross algorithm) in the C++ solution domain analysis
table, noting instantiation properties (not applicable in this case) and binding
times (we can afford to bind these at compile time). We find that templates
and inheritance with virtual functions are indicated as the appropriate solution
mechanisms.

20

Domain Dictionary for Text Editors

nordi iq

A domain dictionary is a simple dictionary of domain terms. Some of them
may be domains, while others may be more detailed definitions useful to the

designer. If in doubt about whether a term belongs in the domain dictionary,
include it.

21

r 3
TextBuffer Variability Table
TextBuffer : Common Structure and Algorithm
Parameters of _ _ o Default /
Variation Meaning Domain Binding Technique
Output Type The formatting of Database, Run UNIX File
text lines is sensi- RCS, TTY,
tive to the output UNIX file
medium
Character Set Different buffer ASCII, Compile | ASCII
types support EBCDIC,
different character wchar t
sets B
Working Set Different applications | Whole file, Compile Whole file
Management need to cache dif- whole page,
ferent amounts of LRU, fixed
memory
Debug in-house Debug, Compile None
only, but keep tests production
in source code
. |

This table captures the parameters of variation for Text Buffers, their

meaning, the domain of variation, the binding time, and the technique that we

draw from the table of C++ commonalities and variabilities. This table
documents our design decisions and points the way to implementation
structures that support the “shape” of the analysis architecture.

22

Celestial Body Domain Analysis

Celestial Body Domain Analyss Class Di

Celestial Body

Celestial Body Ephemeris

<<v>> rate

<>
Polynomial Model

<<va>
Integration Model
parameters.

Integrate(
set_parameters)
miliniialiaai=0 Validate_Parameters)

Y44 DN

<<V
Celestial Body Magnetic Field

[magnetictield)

<<va>
<<v>>
Canstant Magnetic Fleld Dipole Magnetic Field
Dipole Coefficients
wiench(

magnetictield) magnetictield)

From McComas et al, “Addressing Variability in a Guidance, Navigationda

[bose means posiion
and orientation. wrench
is force and torque.
Some bodies will only
need ransiation, some

<<v>>
Celestial Body Albedo
luminance
<<va>
Celestial Body Gravity
lparameters

jwrencho

<7

s
Spherical Hamonic Graviy
wrench() lwiench(

0.+ <<ve>
Celestial Body Atmosphere
parameters

density)
wrench

<V
Constant Atmosphere Density
density)

<<v>>
Hartis Priester Atmosphere.

<<ve>
Jacchia-Roberts Atmosphere Density

density)

nordi iq

Control Flight Software Product Lined't eseer.ist. psu edu 418569, it mi

23

Changing the analysis into architecture

e Programming languages express Commonalities and
Variations

Object orientation
Commonality in behavior and structure
Variation in algorithm and structure
Procedural
Commonality in algorithm
Variation in parameters
Templates
Commonality in code structure
Type and value parameters
e Other technologies also can express families
Parser generators, GUI generators, etc.

* We need to take the commonality analysis into an
architecture

* We do thatin a process called transformational ana lysis)

A 2l

Once we are done capturing commonalities and variations, now what? It's
time to code it up.

We know the commonalities and variations of each of our domains. Our
architecture should express those. Why? Because what is written is hard to
change. And because the commonalities of our domain, which should be
long-term stable invariants, won’t change. And the ways in which the family
members vary isn’t likely to change.

How do we express these? In our implementation technologies. The most
common implementation technology is a programming language. There are
other implementation technologies, created to capture the structure of
specific domains: parser-generators, spread sheets, document processors,
and the like. You need to know what your quiver of implementation
structures looks like, too. Knowing that, you can translate your domain
analysis into something that looks like code: an architecture. To do that, we
try to match up the solution domain structures with the analysis structures.

24

Commonality Variability Binding Instantation | C++ Feature 5 Think of this
Function | Anything other | Source N/a Template as meta-
Name and | than algorithm design
Semantics |structure
Fine algorithm | Compile N/a #ifdef ;
U Gives a
Fine or gross | Compile N/a Overloading formal sense
algorithm of what
Data| Value of State [Run Time Yes Struct, simple “paradigm”
Structure types means
A small set of |Run time Yes Enum
values
Types, values | Source Yes Template . GOF patterns
and state and special
Related | Value of State | Source No Module language
Operations features
and Some | Value of State | Source Yes struct, class
Structure Com.e. from
Data Structure | Compile Optional Inheritance additional
and State tables
Algorithm, Compile Optional Inheritance
Data Structure
and State Run Optional Virtual
Functions
A B—

Bjarne Stroustrup has never called C++ an object-oriented programming
language.

We analyze not only the application domain, but the solution domain as well.
This is the domain analysis for C++ commonality and variability. It is the
same form of table we will use when seeking commonalities and variabilities
in the application domain.

The table builds on commonality categories. When we find a particular
commonality category and variability category in the application domain, we
can look up that pair in this table and choose the corresponding
implementation technique for the implementation technology being used.
This table applies to C++ users; we can build other tables for other
programming languages. | believe the tables work best for highly expressive
languages; for example (but not exclusively) those with a strong type
system. We can also build tables for implementation technologies other than
programming languages, like finite-state machines, databases, etc.

r 3
TextBuffer Transformational Analysis
TextBuffer : Common Structure and Behavior
Parameters of _ _ o Default /
Variability Meaning Domain Binding Technique
Output Type The formatting of Database, Run UNIX File
Structure, text lines is sensi- RCS, TTY, Virtual
Algorithm tive to the output UNIX file Functions
medium
Character Set Different buffer ASCII, Compile | ASCII
types support EBCDIC, Templates
Non-structural | different character FIELDATA
sets
Working Set Different applications | Whole file, Compile Whole file
Management need to cache dif- whole page, Inheritance
Algorithm ferent amounts of LRU fixed
memory
Debug in-house Debug, Compile None
Code only, but keep tests production #ifdef rom
Fragments in source code Taigy

A

4

We annotate the first column of the table with the commonality categories for

the respective parameters of variability. Looking at the background of
commonality (Common Structure and Behavior) and the commonality
categories in the Parameters of Variability column, we can choose a C++

feature to express the commonality/variability pair by looking up the pair in
the Transformational Analysis Table and Negative Variability Table.

In the TextBuffer design, we see that a combination of virtual functions,
templates, inheritance, and #ifdef is called for.

26

The Solution for Text Buffers

nordi iq

Here is one solution for the text buffer design that exhibits how to capture the
commonalities and variabilities in C++ language constructs. The conversion
from the transformational analysis to code is not formal, but should be
intuitive to the informed C++ designer.

27

(W

Negative Variability Table

C++ Feature| C++ Feature for Supplemental
for Positive Corresponding Material
Kind of Commonality | Kind of Variability Variability | Negative Variability
Name and Behavior | Gross Structure or | Templates Template
algorithm Specialization
(parametric)
Structure, algorithm, [Fine structure, value| Templates | Template argument
name, behavior or type defaulting
Enclosing data | Fine structure and | Inheritance union
structure "type"
Semantics and Name | Default value ina | Argument Supply explicit
(of function) (formula or algorithm| defaulting parameter
Overloading Overloading
Commonality in some |Membership in Data| Inheritance, Re-factor using
data structure, Structure adding data |pointers to alternative
perhaps in algorithm members implementations
Some commonality in Behavior Inheritance, | Private Inheritance
structure and overriding or
algorithm adding virtual
functions
Most source code Fine algorithm #ifdef #ifdef

SS9 _

281

For negative variability, we use this transformational analysis table instead of
the one presented earlier for positive variability.

(W

Commonality | Variability Binding Instantiation Pattern
Function Fine Run time N/A Template Method Supplemental
name and algorithm Material
semantics Algorithm [Run time N/A Unification +
with Template Method
compile-time
default
Algorithm: [Run time Yes State
Parmeter of
variation is
some state
Related Gross Run time N/A Strategy
operations algorithm
and some Value of Source time |Once Singleton
structure state
Gross Source time | N/A Strategy
Algorithm | (or compile (templates) or
time) Unification
Related Incompat- | Any Yes Bridge or
operations ible data Envelope/Letter
but not structure
structure

29“

Most design patterns from the GOF book are stylized mechanisms to capture
microarchitectures that represent particular commonalities and variabilities.
Others are techniques to capture negative variability.

Kind of Kind of g . Supplemental
Commonalty | Variabiity Bindng | Instantation| Pattem | yoe
Some Function Comple| Optinal Adapte
structure and{nameand |or run
algaithm semanics |time
Related Cancelation | Any Yes Bridge
opegations |ofclass
butnot menbership
structure
A L5

Many patterns capture commonly recurring configurations of negative
variability.

The “Coplien Notation™

Debuggi_ng Working Set
Code._ Fine Management:
Algorithm Algorithm

A il

Here we encode the parameters of variation in graphical form. The
commonality domain (Text Buffer) is at the center; we draw arrows to circles
representing the parameters of variation. Why? This may look like a hobby
horse that is done for its own sake, but we this notation will serve us well
later. If you think about it, parameters of variation—which we describe as
commonality categories—may be interesting domains in their own right. In a
complex system, what is a parameter of variation in one domain may be the
core commonality in another. That implies an interaction between domains.
The best domains minimize these interactions, as we emphasized earlier in
this seminar; however, some interaction is inevitable. These interactions
can introduce strange loops into design, and it pays to understand them.

31

The File Domain

Encryption:
Algorithm

Debugging RecordType

Code: Fine Structure and

Algorithm Algorithm
A 5 |

Here is a dependency chart for the File or Output Media domain. The
parameters of variation include the Buffer Type—our Text Buffer domain.
Remember that the Text Buffer domain also took OutputMedia as a
parameter of variation. Each domain depends on the other! Furthermore,
both domains take Character Set as a parameter of variation.

We should merge these graphs to understand the overall design of the text
editor

Multi-Domain Dependency Cycles

Encryption:
w\ Algaeithm

Record =
Debugging Code! Structurﬁyg

\Fine Algorithm Algorithm

T

Debugging Working Set
Code: _F;]ne management:

Algorithm / Algorithm

AN

k SS9 _

331

To design an editor, we must reconcile the design of all relevant domains.

Note that there is profound reuse implication here: the granularity of
effective reusability depends on the ability to break domain dependency
cycles. If we can’t easily break these dependencies, then we must use both
domains together. As these domains pull in more and more related domains,
they become a large, reusable architecture. We sometimes call such
architectures frameworks. Of course, the individual sub-domains may be
frameworks, too, but they are only reuseful if they are large enough to be
interesting, and small enough to be manageable.

33

The Unified Analysis

Encryption:
Algorithm

Debugging Code:
Algorithmic Frags,

Working Se
management:
Algorithm

Debugging
Code: Fine
Algorithm

k S 4

When we collapse the graph, the circular dependency between Output Media
and Text Buffer is apparent. Other parameters of variation, like Character
Set type, factor out nicely.

We can deal with circular dependencies either by 1) adding levels of
indirection; 2) using unconventional abstracting techniques for one of the
reciprocal arrows (delegation instead of inheritance; templates instead of
inheritance), or 3) re-factoring the circularity out of the design.

Let's look at the implementation of this design, for the case where the Buffer

Type depends on Output Type at run time, and the Output Type depends on
Buffer Type at compile time.

34

One Potential Solution

tenpl a e <d ass Text Buffer, d ass Char Set >
class Qut put Medi um{
public

vad wite) {

suba ass- >get Buff er(wit eBuf);

}

Out put Medi un{ Text Buffer *sc): sub@ ass(sc) { }
pr ot ected:

Text Buff er *sub@ ass;

Char Set witeBuf[128];
h

tenpl a e <d ass Text Buffer, d ass Orypt, dass Char Set>
class Un xFle public Out put Medi um<Text Buffer, Char Set>
protected Qypt {
public
Uni xRl g(std: basi c_string fileName, Text Buff er *sc):
Qut put Medi un<Text Buffer, Char Set X(sc) { }
voi dread() {

.C.I.y.pt::decrypt(buffer);

Y

A Sl

In our example, the text buffer behavior varies according to the output type,
and must defer the decision of which behavior to use until run time. The
output type depends on the buffer type, but can bind its decisions at compile
time. We address this using a multiple dispatch idiom. The text buffer notifies
its associated output medium that it wants to perform an operation, and the
output medium reciprocates.

We note that the output type depends on the buffer type at compile time. The
domain is Output Media; the parameter of variation is the buffer type
(variation in type); the underlying commonality for Output Media is structure

and algorithm. Multi-paradigm design indicates that we should use templates.

We handle encryption with inheritance; more about that later.

Output media also vary according to the record type: whether a UNIX file,
database, RCS file, etc. This variation shows up in structure and algorithm.
Requirements dictate that we track the variability at run time, so we use
inheritance and virtual functions. The virtual declaration appears in the base
class above. The write member function will be discussed below.

35

tenpl at e <d ass Char Set>
class Text Buff er {
public:
string get Li ne() {
stringretvd;

reeurnretvd;

}
voi d get Buff er(Char Set *) {. ...}
Text Buffer() {. ...}

i

typedef Un xHlePagedText Buffer<Orypt, Char Set> Mg;

tenpl ate <d ass Qypt, dass Char Set>

class Un xHIl ePagedText Buff er: public Text Buff er <Char Set >
protected Uni xFle<Me, Qypt, CharSet>{

public
Uni xF | ePagedText Buff er(st d: basic_string fileNane):

Text Buf fer <Char Set X(),
Uni xFle<Me, Qypt, Char Set X(fileNane, ths) {....}

string getLlineg) {....read);....}

% el 4

The text buffer depends on the character set at compile time, and on the
output medium at run time. For example, the text buffer may take advantage
of version information available in RCS files, or it may use permanent tags or
line identifiers available in a database medium. We may want to write buffer
contents to several different output media as the program executes. The
output medium causes variation both in algorithm and structure of text
buffers. We handle this using a variant of the multiple dispatch idiom. When
the write member function of TextBuffer<CharSet> is invoked, it defers to its
associated output medium (of unknown type) to dispatch to the proper write
function. OutputMedium obliges (as in UnixFile::write above) by turning
around and invoking the appropriate member function of
TextBuffer<CharSet> (see above).

The variability in output type also drives a variability in structure; this is
captured in the output medium class, rather than in the text buffer class itself.
The algorithm specific to each pair of buffer types and output media appears
in the member function (named for the output medium) of the corresponding
class (named for the buffer type). Different derived classes of
TextBuffer<CharSet> each have their individual implementations of
unixWrite , databaseWrite, and other function specific to output media types.

36

dass RSA {

pra ect ed
va d encrypt(string &;
vd d decrypt(string &);

irt man){
Uni xHl ePagedText Buff er <RSA wchar_t > buffer;
string buf = buf er. get Li ne();

L e A‘

As stipulated by the domain analysis, an output medium is associated with a
text buffer type at compile time (and with a corresponding text buffer instance
at run time). Note that for this main program, no object code for
FullFileTextBuffer will be incorporated in the executable, though object
code for all output media will be present.

We can handle encryption with inheritance. It would be straightforward to
derive a new class from UnixFile<char, PagedTextBuffer<char> > |
overriding the encrypt member function, to create a new family member that
supported an encryption algorithm of our choice. If the number of encryption
algorithms is limited, they can be stockpiled in a procedure library and
suitably called from the overridden encrypt function in the derived class. As
another alternative, we can do things in a more “object-oriented way”.

37

Architecture Summary

e The architecture should match the domains for good
evolution

e Choose a solution binding suitable to each domain
C++ covered here
Java, C# are also possible with limitations

e Other advanced notions for free

Formalizes the notion of paradigm in terms of
commonality/variability pairs

Is essentially aspect-oriented design
Breakdowns in symmetry point to the need for patterns
e Object Orientation is one common structure from dom ain
analysis
As with any paradigm, you still need engineering
constructs—those are next

IS

A 2l

Multi-paradigm design finally provides a design method suitable for
leveraging the C++ programming language. It is a general technique that
avoids the pitfalls of using any single design method. It is in fact a form of
meta-design useful for choosing the right paradigms. One still needs the
tools and techniques of individual design styles, such as object orientation,
to complete the design. And the technigue is not mechanical or automatable;
it is suggestive rather than prescriptive.

Because of its generality, multi-paradigm design can express concepts that
elude object orientation. This leads to more maintainable designs,
particularly for complex systems. It can capture the design rationale behind
constructs such as overloading and templates in ways that OOD cannot and
that UML certainly cannot.

38

4. Applying OO Fundamentals

nordi iq

39

4A. Definitions — Quickly

nordi iq

Next we will define some common terms for the sake of being able to
communicate with each other. These definitions conform to common industry
use.

40

4B. Classification Concepts

nordi iq

We can revisit many of these concepts in terms of classification, as above.
The conceptualization space is richer than most object methods usually
afford. Here, we carefully separate them. Why? It gives us more agility.
Tying them together is like a three-legged sack race. We want separate roles
to be able to run independently: Drawable should not necessarily be tied to
Shape.

41

Inheritance

e Arelationship between classes—not types
¢ Not an analysis concept!
* Animplementation mechanism used for:
Polymorphism and subtyping
Code reuse
e Supports substitutability

e Its main use is to organize software familiesinth e
architecture, a product of domain analysis

k ISR 19 ®|

Subytping is a relationship between classes whereby one class takes on
some implementation of another. The base class is the donor of such
functionality; the derived class is the recipient. The derived class may
override the member functions of the base class where it thinks it knows
better how to implement such (e.g., class Circle can implement the rotate
operation more optimally than its base class, Ellipse).

Inheritance is the usual mechanism to support subtyping in C++ object-
oriented programming and also supports subtyping in Java. In a more vulgar
sense, it supports code reuse. We will explore inheritance in more depth in
section 111.B below.

42

Abstract Data Type

nordi iq

An abstract data type is abstract in the sense that it lacks code. The code
that implements an ADT is called a class. Though there is no code, an ADT
can be fully specified.

43

Role

nordi ia

A role is closely related to an ADT except we usually think of it as a partial
classification rather than as a total classification. Like an ADT, it is a set of
responsibilities related by some business concern. Here, we again separate
out the concepts of Shape and Drawable from DrawableSquare.

We will use roles largely in conjunction with Use Cases: We will collect the
related responsibilities of an Actor in a Use Case, and turn them into Roles.

44

4C. Role-Based Modeling

nordi iq

45

4D. An example: Shapes

nordi ia

Here is one implementation of a suitable Shape / Drawable hierarchy. We
may have some common code at all levels, but it is surprising how much of
the code falls into the derived classes.

46

nordi ia

Here is another alternative, which perhaps a bit better factoring of
commonality. However, with just this design, we could only have our GeoSat
understand Circles if it also understood Drawables.

You need to do careful domain analysis to separate these out.

47

5. Responsibility-Driven Design

* Responsibilities tend to be stable over time.

e Contrast with functions, which change over time.
* Responsibilities: Relate to the problem domain.
* Functions: Relate to the structure of the solution

SR 19 _

(W “ 4

We earlier discussed the importance of scenarios: that they help us identify
the responsibilities of the objects in our system. Scenarios change over
time; the responsibilities we seek should be stable over time. You may
drive your automobile over may different courses, but the automobile
supports you through each journey with th same set of responsibilities:
accelerate when you depress the accelerator, stop when you depress the
brake, and turn in the direction of the steering wheel.

Responsibilities are expectations , and we find these are stable over time
in most domains. The functions that implement those expectations change
with technology and with different customers. Your steering may be
implemented as power steering, rack-and-pinion, or as a conventional
universal joint. All three functions implement the same responsibility.

We will focus on responsibilities, and on the relationships between objects
that those responsibilities imply in the context of the system’s role in life.
Responsibilities and relationships should be the focus of good system
design. This holds for software systems as much as it does for sociological
systems, where responsibilities and relationships are the keystones to sound
structure.

48

“Whao” is Responsible?

. We can identify responsibilities — things that need to be done.
. Objects are responsible for carrying out the responsibiliti es.
o Responsibilities defines the role.

. Roles are interfaces to objects of some class.

. Classes gives context to the responsibilities.

. We iterate the list of classes and their responsibilities, as well as
the list of roles and their responsibilities.

L SS9 4

Focusing on responsibilities alone isn’t enough: there is also the issue of
accountability, of where the responsibility lies. We attach responsibilities to
objects. Objects become the agents, the experts, the specialists who work
together inside our software systems to achieve the overall system goal.
They do so by being faithful to their responsibilities. The system works
because the responsibilities—the services available in the “society” of our
program-support the use cases we expect of the system.

Responsibilities define the classes. If you are a manager building a team,
you characterize the roles to be filled in terms of the responsibilities you
expect of those roles. The role is defined by its responsibilities.

But classes define the responsibilities as well. Existing libraries and
conventions suggest or impose mappings of responsibilities onto objects.
The knowledge and data inside a class suggest some of its responsibilities,
or dictate where the designer should assign responsibilities.

Both views must be considered, and matching responsibilities with classes is
usually an interactive task. Use cases help move the iteration along.

49

F CRC Cards: Classes, Responsibilities, and h
Collaborators
Window
Display Characters Keyboard
Scroll Contents View
Erase Contents Mouse
Draw Lines
i S B i

The tool we will use for object-oriented analysis is a CRC Card. There is
nothing special about a CRC card: itis just a 8cm x 13cm (or perhaps
slightly larger) lined paper index card. On the very top, we put the name of
the class (here, it is Window). On the left side of the card, we list the class
responsibilities (Display Characters and so forth). On the right side, we list
the helpers (Keyboard, View, and Mouse) that will work together with this
class to fulfill its responsibilities. Helpers are other classes in the system.

The size of the card is important. We want to write succinct, semantically
rich, concise words for responsibilities and class names. We don’t want you
to use these cards to write an FSD! The cards are not important: what is
important is the team interactions and team understanding they bring out
during a design exercise. So if you lose your deck of CRC cards, don’t
worry—the important design information is in your head, and in the heads of
your teammates.

CRC cards are an informal tool. Don't try to line up collaborators on the
same lines as the responsibilities. Keep them small. Keep them simple.

We will be discussing many “rules of thumb” for CRC cards during the rest of
the day.

50

« Carry out scenarios. > %2/7@)

» Done by a group of domain experts. @ O’/;,;?/_‘?" o,?g”/ée o

« Little object-oriented expertise necessary. }/)GGV@/O;Q}E),;OOA Ze/%[

« Great team-building tool. f//”@’e%off Sy OF /\@;’04),;@’/78

 Great for building shared vision of %oss C”%f:f’ 5, “ %/v,
architecture. Vef,of’%(,e g

« Great to identify stake-holding relationships. O‘"@ssjaf,g

= Something no CASE environment can do. A

S T

(W o 4

CRC cards are usually filled out during a role-playing meeting. The
participants should be a small team of domain experts. This team will be the
one that shapes the project (or subsystem). It is not only important that the
right domain expertise is represented, but that the individuals eventually form
a cohesive group where motivations and insights are shared and
understood.

It is more important that these analysts understand the application domain
than objects. The CRC technique relies on the intuitions of the domain
experts present more so than on any notion of objects. If there is a facilitator
present, CRC cards can be used by a team with little or no prior exposure to
them. Itis important that an experienced facilitator oversee the first couple
of meetings to help the group learn the technique.

The primary output of a CRC meeting is a deck of cards. But more
important than that, the meeting develops understanding of why this set of
cards was selected, and why responsibilities were allocated as they were. It
builds a shared vision of the system architecture a cross the entire
development team. Furthermore, it helps team members identify stake-
holding relationships, sources of expertise, and the orientation of other team
members to the project. Itis a great team-building exercise.

Organizations using CASE environments as their primary design tool rarely
reap these benefits. You can’t develop the same completeness of design
understanding by sitting at a work station drawing bubbles and arrows as
you can socializing a design in an interactive meeting.

51

CRC: The Social Setting

« JAD-like: make sure stakeholders are there or repre sented
e Let specialists play roles
« Two modes:
All cards on the table, arranged according to their coupling
“Create” cards as they are needed

Each person owns one or more cards (Standish report
encourages ownership)

(=

L EER9 3 4

CRC cards are reminiscent of Joint Application Development: a design
technique based on extensive stakeholder presence and engagement. There
are two ways to get it started: either by letting each stakeholder own cards,
or by letting a group stand around a table on which the cards are arranged. It

is O.K. (and sometimes necessary) for a given individual to “own” one or
more cards.

The Standish report on software cost overruns (1994-1995) established that
ownership is a significant factor in software cost; this is a good place to start
identifying ownership relationships.

52

3
6. Tying it Together

_Investment pays off '

Business Responsibilities

e
(LTl

o

ey

»
.
i

ity

omain Responsibilities

F “rodiia |

Now we want to tie everything together. By dividing analysis into domain
analysis of long-term stable assets, and Use Case analysis of evolving user
functionality, we have a complete picture of what needs to be built. Now we
need to reconcile those two views with each other, to assure that the system
will work (to the degree we can) and to sling code.

In summary, we will extract roles form the Use Case actors, make sure that
the roles fit the classes in the Domain Analysis, all using the interactive
social technique of CRC cards. Once we can “run” the exercise using CRC
cards, we can code it up.

53

- Design Alternatives

nordi iq

There are several ways to skin a cat; some common alternatives are
described above. Exactly how you approach this will depend on business
needs and on your culture.

54

The Big Process: Spiral

nordi iq

The outer, enclosing process is fundamentally iterative. It is good to add
structure to the process. If you are doing SCRUM, you already have such
structure in place. SCRUM is a form of spiral, as shown above.

55

- Factoring and Refactoring

nordi iq

56

7. Implementing the Design

This is an outline of the final section

nordi iq

57

Mapping the CRC cards into Code

nordi iq

58

Special case: Instantiation

nordi iq

59

ncl ude < ope>
rope<char>fileBuffer ; //incorefile content

class stringnterface{ //rde

const virtud char operator*(va d const =0;
virtud string nterface &opera or+Hvad) =0;
vrtud char &operator[](int) =0;
I

Uni xFle*fp=new Uni xAl et ext Buffer>(file tb) ;

fil eBuff er =fp->whol eFl eAsRope() ; // get content
string nt erf ace *fil e = &il eBuffer ; // rd e

stringl nt erf ace *t ext Buff er = /l ancther rd e
new Uni xH| ePagedText Buff er<trapdoor >;

/*
* Now copy rdetorde
#

whil e (*t ext Buff er ++ =*file++) { }

A L

In this example we eventually want to copy characters between two objects
using a string-like protocol. We define stringinterface as the role that elicits
the string behavior of a number of string-like objects. We “wrap” each of a
rope<char> and UnixFilePagedTextBuffer with a stringinterface role. Now we
can treat them each as string-like objects without regard to their underlying
form.

If at some point we want to change the code to use std::string<char> instead
of rope<char>, or if we want to move the copying code in to a more broadly
used character-copy function, the role protocols insulate the copying code
from those changes.

60

Java Example

Here is a trivial Java example, adapted from
http://www.fluffycat.com/Java/Interfaces/.

nordi iq

61

Missing responsibilities?

nordi iq

62

Role responsibilities split across objects

new
compand

compand

Role
compand

“Staging” Domain
Object Objects

L _nordija I d

If a CRC card has responsibilities that can't all be found on one domain
class, you need to create a community of objects that together fill the role.
Create a new domain class so you can instantiate a staging object that
creates instances of the domain objects as needed. The staging object can
be used where a role (Java interface or C++ abstract base class) would
otherwise be used.

r 3
: . . .
Don't forget good engineering practices
e Laws of Demeter
e Pre-conditions and post-conditions
e Inheritance and subtyping rules
e Covariance and contravariance
= ./}7 >
Uy, s
(¥ U5, ey 2o,
L O, S Y
8 ‘V/ZO‘%;@’J”;%‘”}?@”@/;
Qg/k.cobe @/7/79 ,Ob g[/?e [@}}'
/a/ /J/C 'OI‘Q @/’Z G COO/O’[//'@
OS’SQC[‘/C‘@S OO @.[/)e
/@ /.@0[/
QQ/[O @
A —

So far, we have just done analysis and basic design. Good programming
requires some engineering skills. Object orientation comes with a wide
palette of engineering techniques. The Laws of Demeter help you audit
coupling and cohesion, and further insulate domain classes from changes in
customer whims. Pre-conditions and post-conditions can help you gauge the
correctness of inheritance and, in general, the adherence of the design to
requirements that come from Use Cases. Covariance and contravariance
are unusual problems that must be understood when building maintainable

inheritance hierarchies.

64

8. Course Summary

nordi iq

65

| References

nordi iq

66

