
Bernhard Merkle
Central Research & Development

Software-Engineering
SICK-AG Waldkirch, Germany

mailto: Bernhard.Merkle@sick.de
mailto: Bernhard.Merkle@googlemail.com

ACCU 2007

Linting Software Architectures

2

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:2

Some Background, and the plan…Some Background, and the plan…
z About…

z myself
z SICK

z The plan for this talk
z Software-Architectures

z Terms, Definitions, etc
z Checking Architectures

z Different Kinds of Architecture-Analysis
z Tools for Architecture-Analysis

z Experiences, Discussion… ;-)

3

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:3

Linting Software-ArchitecturesLinting Software-Architectures
z Why should we care ?

z In lots of Projects, Architecture declay happens
z We are not alone, as we‘ve prominent representatives… ;-)

4

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:4

Software-Architecture: DefinitionsSoftware-Architecture: Definitions
z IEEE 1471-2000:

z The fundamental organization of a system,embodied in its
components,

z their relationship to each other and the environment,
z and the principles governing its design and evolution.

z Booch, Rumbaugh, Jacobson 1999
z ... the set of significant decisions about the organization of a

software system ...
z … is the highest level of technical design for a software

system: It is driven by your key concerns

5

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:5

Views on a Software-ArchitectureViews on a Software-Architecture
z 4+1 View Model (Kruchten, 1995)

6

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:6

Documenting a Software-Architecture (Kruchten)Documenting a Software-Architecture (Kruchten)
z captured in two documents:

z Software Architecture Document
z Software Design Guidelines

z respected to maintain the architectural integrity of the system.

z Documents are important, but they are Documents (enforce ? ;-)

Æ Some kind of Automatic Rulechecking

7

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:7

MDSD (Model Driven Software Development)MDSD (Model Driven Software Development)
z Aproach:

z Architectural Design IS IN the model (and Application !?)
z Executable Model (MDA, UML+CodeGen, UML-VM)
z Source: Model, Target: Application (Æ Forward Engineering)

z Open Items:
z Reverse-/Roundtrip-Engineering ?
z UML too general: DSL ? (Meta-Modeling Support)
z Important Standards (e.g. in MOF, ASL, QVT) ?
z Manual Extensions of generated Code
z Good Integration of “legacy Software” ?

8

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:8

Architecture-AnalysisArchitecture-Analysis
z Lint == STATIC Analysis

z hence…some limitations if you do things/tricks at runtime
(e.g. Reflection in Java,…)

z With Tool support
z Pro: automatic, consistent, rule enforcement
z Cons: Semantic, external Quality

z The Pro is much stronger compared with Code-Lints !!!

9

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:9

Levels of Static Analysis:Levels of Static Analysis:
z Goal: (on all Levels)

z find, avoid Problems, Increase QA (and measure it)
z Micro-Level

z Code, MIRSA-C
z E.g: =, ==, {},

z Marco-Level
z Class-Design, Effective Rules, C++, Java, C#
z E.g: by reference, String concat, Exception-Handling

z Architecture-Level:
z Layers, Graphs, Subsystems, Compoments, Interfaces
z E.g: Coupling, Dependency, etc…

10

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:10

Different kinds of Architecture-AnalysisDifferent kinds of Architecture-Analysis
z Consistency-Analysis
z Rating of Architecture
z Discover a Architecture
z Measure real facts (e.g. metrics)
z Monitoring changes, trends (QA)

11

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:11

z Aim: No inconsistency

z Dispersion (no toolchain, information loss)
z Declay of Architecture, Rules vilotated,

(over project time, various reaons…)
z Deviation Comparison

Consistency-AnalysisConsistency-Analysis

Requirements
Analysis

Architectural
Design

Design +
Implementation

12

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:12

Consistency-AnalysisConsistency-Analysis

Should-
Architecture

Requirements

Architecture-
Design

Comparison “Diff-”
Architecture

Actions

Extraction Is-
Architecture

Existing Code

•Violations
•Conformance•Dependencies as exist

•Interfaces / Usage as exist
•Subsystems

•Model Dependencies
•Model Interfaces
•Model Subsystems

•System SHOULD be: maintainable, easy to understand, extensible, independent

•System IS: …☺

13

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:13

Consistency-Analysis: Things become VISIBLEConsistency-Analysis: Things become VISIBLE

z Results aggregated the right way: (e.g. Subsystem level)

14

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:14

How to cope with violations…How to cope with violations…

z Identify violations
z Where
z Quantity, Quality
z Heaviness, Impact

z Handling violations
z Fix possible ? (effort, costs, time)
z Virtual refactorings, Simulations
z List with modifications
z Programmer implements fixes
z Sometime, “autofix” lint ?…☺

15

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:15

Rating of ArchitectureRating of Architecture

z NO Rating of external Requirements (Fullfillment)
z Internal Quality (is the focus)

z Cycles
z Coupling
z Stability
z Anti-Patterns, Bad Smells

z Target:
z Analyze Problem (and fix) (during project)
z Compare _different_ Architecture solutions ?

16

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:16

Rating of Architecture: e.g. CyclesRating of Architecture: e.g. Cycles

z Handling of Subsystems becomes difficult…

17

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:17

Rating of Architecture: e.g. CouplingRating of Architecture: e.g. Coupling

z DIP (Dependency Inversion Principle), R. Martin

Packg. E

Class X

Packg. F

Class Y

Packg. E

Class X

Packg. F

Class Y

before

after

Interface IX

18

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:18

Rating of Architecture: e.g. AntiPatternsRating of Architecture: e.g. AntiPatterns
z Dependent BaseClass

z Type: Design Problem

z Problem: one of more Methods shall implement
different behavior, depending on the type, passed in

z Context: make “extensible” systems, frameworks
z Forces: Programming languages offer, instanceof/typeid funcs.
z Antipattern: Methods of the baseclass, depend on derived classes, e.g.

accessing their members, doing switch/case depending on type
information

19

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:19

Rating of Architecture: e.g. How to find AntiPatternsRating of Architecture: e.g. How to find AntiPatterns
z Dependent Baseclass: 1,5/1000 in Eclipse 2.1, 16/1000 in JDK 1.4.0
z Multiple Interface Inheritance 4/1000 in Eclipse 2.1, 18/1000 in JDK 1.4.0

20

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:20

Rating of Architecture: e.g. How to find AntiPatternsRating of Architecture: e.g. How to find AntiPatterns
z JDK 1.5:… 1315 classes in 229 packages all depend on each other !!!
z classes.zip, rt.jar (BIG BALL OF MUD ? ;-)

21

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:21

Discover a Architecture (Erosion, prog. understand)Discover a Architecture (Erosion, prog. understand)
z Visualisation of _existing_ Architecture (Layout !)

z Architecture often implicit
z Undocumented
z new staff in project,
z Quick Overview of external software

z Erosion and Analysis
z Discover central abstractions/key concepts, e.g. Worker-classes
z Typical Usage of certain artefacts, Patterns

z Navigation
z Used from, Using others,…
z Library dependency ?
z High-Level Cross Referencer

22

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:22

Discover a Architecture: QuestionsDiscover a Architecture: Questions

z Is there a Software Architecture ?
z Implicit, explicit
z Conformance with rules

z Which Architecture Artefacts are there ?
z Interfaces, Packages, Components, Subsystems, Layers
z Layer-Architecture, Graph-Architecture,…

z Any Violiations of the Reference/Target-Architecture ?
z Cycles between xyz…
z Interface violations between subsystems
z Bypassing Interfaces

23

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:23

Discover a Architecture: Level of AbstractionDiscover a Architecture: Level of Abstraction

z Topologic sorted layout, only Call-Relationships

•Business Modules
•Public, exported Methods

•Utility Modules, Infrastruc
•Private, internal Methods

Using… Used by…

24

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:24

Discover vs.Model a Architecture: Variance comparisonDiscover vs.Model a Architecture: Variance comparison

z Arch. sorted layout, only Call-Relationships

•You SEE the architectural violoations

Using… Used by…

25

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:25

Discover a Architecture: Level of AbstractionDiscover a Architecture: Level of Abstraction

z Topologic sorted layout, only Inheritance-Relationships

•You SEE important Base-Classes….

Sub-Classes… Base-Classes…

•E.g from Core:
IWorkspaceRunnable 102x
IAdaptable 100x
IPlatformObject 50x

26

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:26

Measure real facts (e.g. Metrics)Measure real facts (e.g. Metrics)

z Metrics are _indicators_ for
z Quality, Understandability, Maintenance, Error Probability,…
z Hard facts, measured numbers

z Examples
z LOC (lines of code)
z Cyclomatic complexity
z ACD (average component dependency)
z Metrics of Robert C. Martin (abstractness, instability etc.)
z Inheritance depth, overridden/implemented methods,…

27

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:27

Measure real facts (e.g. Metrics)Measure real facts (e.g. Metrics)

z Controlled Quantities
z LOC, #of pakets, files, classes, methods
z Simple counting of certain artefacts
z Set a threshold
z Identify and handle outliers

z Discover candidates which are
z Sources for bugs, complex, hard to maintain
z Performance problems
z Duplicates

28

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:28

Monitoring changes, trends (QA)Monitoring changes, trends (QA)
z Level Subsystem, Package, File, Class, Operation etc.

z New artefacts
z New dependencies
z New Architecture violations

z Early, betimes correction of viloations

z Monitoring
z Trendreports
z “outsouring” projects

29

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:29

Tools for Architecture-AnalysisTools for Architecture-Analysis
z Features:

z Static Analysis Æ Actual state of Arch
z Description of Arch Rules Æ List of violations, deviations

z Show Dependencies (granularity, number, graph)
z Simulation of Refactoring, Worklist
z Metrics
z Trendanalysis

z IDE-Integration
z Web-Report
z Automation, cmd-line

30

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:30

Tools for Architecture-AnalysisTools for Architecture-Analysis
z Products:

z Sotograph: www.software-tomography.de
z Bauhaus: www.axivion.com

z SonarJ: www.hello2morrow.de
z Structure101: www.headwaysoftware.com
z Lattix: www.lattix.com

z Klocwork K7: www.klocwork.com

z XRadar (opensource): www.xradar.org

z Others: CodeCrawler, SeeSoft, ResourceStandardMetrics

31

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:31

Basic ApproachesBasic Approaches

z Basic approaches
z Your makesystem…
z makedepend, jdepend
z RE code into UML model
z Eclipse (Java Build Path)

32

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:32

Sotograph: OverviewSotograph: Overview
z VERY powerfull
z Infos via Table + Graph
z Cool layout algorithms
z Known since 2003 (NG”SNIFF++”)
z Mysql DB, open schema
z Fat GUI Client, Web Report
z About 200+ Metrics
z Arbitrary User queries
z Trend Analysis
z Virtual Refactoring
z Java, C++, C#, source parser
z Lightweight SotoArch 2007

33

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:33

SotographSotograph

34

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:34

Sotograph: Source and ArchitectureSotograph: Source and Architecture

35

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:35

Sotograph: Structure and RelationshipsSotograph: Structure and Relationships

36

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:36

Sotograph: Structure and RelationshipsSotograph: Structure and Relationships

z Depenencies: Informations…

37

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:37

Sotograph: Check Arch. Conformance and QualitySotograph: Check Arch. Conformance and Quality

z Arch. violations

38

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:38

Sotograph: Monitoring ChangesSotograph: Monitoring Changes

z of Architecture, Quality, Structure

39

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:39

Axivion Bauhaus Suite
Axivion Bauhaus Suite

User Interface
Access to the Analyses' Results (Interactive
GUI and Reporting)

Analysis
• Architecture

Visualization
• Architecture

Validation
• Interface Analysis
• Cycles, Dominance
• Metrics, Stylechecks
• Clone Detection
• …

Fact Base
(Graphbased)

Scripting Add-On

User Interface Skripting
Advanced Access, e.g. for
automated HTML-Reports

Coarse Grained Scripting
• additional individual analysis facilities
• metrics, stylechecks
• embedding into environment
• ...

Fine Grained Scripting
• individual stylechecks and metrics on the

syntactic level
• …

External Information Sources,
Application, Reports etc.

Resource Flow
Graph

Attributed
Abstract

Syntaxtree

Source Code
C, C++, Java, Ada, VB, Cobol

40

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:40

Dead Code

Axivion Bauhaus Suite

Cycles & Dominance

Interface Analysis

Clone Detection

Axivion
Bauhaus

Suite

Metric Analysis

Architectural Validation

41

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:41

SonarJ: OverviewSonarJ: Overview
z Java centric
z Infos via Tables
z No graphs
z Known since 2005
z “In memory DB”
z Good Eclipse-Pluging
z Lightweight approach

42

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:42

SonarJ: Architecture-MetaModelSonarJ: Architecture-MetaModel

z Architecture-MetaModel:

Your System

User Interface

Business Logic

Data Access

• Step 1: Cut horizontally into Layers

• Step 2: Cut vertically into vertical slices by functional aspects

C
on

tra
ct

s

C
us

to
m

er

U
se

r

C
om

m
on

• Step 3: Defines the rules of engagement

Natural subsystems

43

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:43

SonarJ: Architecture-MetaModelSonarJ: Architecture-MetaModel

z Meta model: layers, vertical slices and subsystems
z Each subsystem belongs to exactly one layer
z A subsystem also might belong to a vertical slice
z The association between vertical slices and subsystems is

typically implemented by a naming convention
z Vertical slices do not have to be present on every layer
z Technical subsystems typically are not associated with any

vertical slice
z Technical systems often do not have vertical slices at all

44

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:44

SonarJSonarJ

45

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:45

Structure101: OverviewStructure101: Overview
z Java (C++, Ada planned)
z Infos via DSM + Graphs
z Known since 2005
z Repository/DB server
z Fat-Client, Web
z Lightweight approach

46

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:46

Structure101Structure101

z Structure101 Architecture

47

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:47

Structure101: Architecture VisualizationStructure101: Architecture Visualization
z Dependency Analyse

48

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:48

Lattix: OverviewLattix: Overview
z Java, (C++ via BSC, doxygen)
z Infos via DSM
z No graphics (or weak)
z Known since 2004
z “In memory DB”
z Lightweight approach
z Fat client
z Trend via cmd line

+ own report

49

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:49

Lattix: DSM PrincipleLattix: DSM Principle
z Artefacts (e.g. Subsystems, Packages, Types, etc.) are displayed

in Matrix
z Colums show “using-” relations
z Rows show “is used from-” relations

z Artefacts can be
z Grouped in Subsystems, Layers
z Arranged hierarchically

z Architecture State can be read via Matrix

z Partitioning algorithms can identifiy highly coupled artefacts
z Rules for allowed/forbidden Relationsships

50

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:50

Lattix: DSM ExamplesLattix: DSM Examples

z Example Architectures, for direct reading from Matrix

51

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:51

Lattix: Rules and PartitionierungLattix: Rules and Partitionierung

52

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:52

Klocwork: K7 OverviewKlocwork: K7 Overview
z Static Analysis Tool with

Archtecture addon
z Inforce, Inspect
z Insight, Project Central

z Infos via Table + Graph, but
WEAK layout algorithms !

z NOT Out-of-the box, but can
be customized via tcl scripts

z Mysql DB
z Fat GUI Client, Web Report
z Java, C++

53

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:53

Klocwork: K7 insightKlocwork: K7 insight

54

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:54

Klocwork: K7 insightKlocwork: K7 insight

55

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:55

Tool ComparisonTool Comparison
z Target audience
z Languages
z Handling
z Process
z IDE Integration
z Infrastructure
z Lightweight, Powerfull, Compliacated
z Features (that you (will) need)

56

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:56

Take homeTake home
z Today's IDEs / mechanisms are not suited for architectural analysis

Æ Use a “lint4Architecture” (no official, my term)
z Tool support is a necessary

Æ Architecture monitoring (possible with a small weekly time investment)

z Management…can be convinced if existing problems become visible
Æ pays off very fast (e.g. one week jdepend analysis vs. Sotograph refactoring done)

z Rules can/will be violated
ÆThere is always a “good” reason for that

z Rule can be checked
Æ Tool support can automate the process
Æ If you have continous build system, start emploing a “lint4Architecture” now !!!

57

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:57

InformationsInformations
z Wikipedia

z http://en.wikipedia.org/wiki/Software_visualization
z http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

z Books:
z Refactoring in Large Software Projects

z Patterns
z AntiPatterns
z Metrics
z Architecture

